Astrophysics. Exam I Review

Chapter 1

• Ancient civilizations and their understanding
• Ancient Greek astronomers
• Stellar parallax
• Precession (what is it, period, consequences)
• Celestial Sphere
• Coordinates systems
• Planetary configurations (opposition, etc)
• Synodic and sidereal periods; $1/S = 1/P_{in} - 1/P_{out}$
• Proper motion ($\mu = v_\theta/r$), radial motion (v_r)

Chapter 2

• Ptolemaic system (epicycle, deferent, etc)
• Heliocentric system
• Copernicus, Tycho, Kepler, Galileo, Newton
• Ellipses ($r = \frac{a(e^2-1)}{1+e \cos \theta}$)
• Kepler’s Laws
• Newton’s Laws
• Law of Universal Gravitation
• Shell theorems
• Coordinate conventions for 2-body problem. (Relative orbit or C.O.M, absolute coords)
• Reduced mass: $\mu = \frac{m_1 m_2}{m_1 + m_2}$
• Center of mass (COM) coords: \(\vec{r}_1 = -\frac{\mu}{m_1}\vec{r} \); and \(\vec{r}_2 = \frac{\mu}{m_2}\vec{r} \)

• Center of mass (COM) coords: \(\vec{r} = \vec{r}_2 - \vec{r}_1 \)

• Total energy in terms of reduced mass:

\[
E_{tot} = \frac{1}{2}\mu v^2 - GM\frac{\mu}{r}
\]

• Total orbital angular momentum

\[
\vec{L}_{tot} = \mu \vec{r} \times \vec{v}
\]

• Results from the derivation of Kepler’s 2nd law

1. \(\frac{d\vec{r}}{dt} = 0 \) (angular momentum is constant in 2-body problem)
2. \(\frac{dA}{dt} = \frac{L}{2\mu} \)
3. \(L = \mu \sqrt{GMa(1 - e^2)} \)

• The total energy of a 2-body system is 1/2 of the time-average potential energy:

\[
E_{tot} = \frac{1}{2}\langle U \rangle
\]

• Escape velocity: \(v_{esc} = \sqrt{2Gm/r} \)

• Kepler’s 3rd law (modified)

\[
P^2 = \frac{4\pi^2}{G(m_1 + m_2)}a^3
\]

• Virial Theorem: for a multi-body system in equilibrium, the time-averaged kinetic energy and potential energy are related by:

\[-2\langle K \rangle = \langle U \rangle\]

• Also, for both multi-body systems and 2-body systems, total energy is:

\[
\langle E \rangle = \frac{1}{2}\langle U \rangle
\]

Chapter 3

• Parallax and distance. \(d(pc) = \frac{1}{\rho^2} \) (for baseline = 1 AU)
- Parallax (more general): \(d = \frac{B}{2\tan p} \)
- Flux, \(F = \frac{L}{4\pi r^2} \) in \(Wm^{-2} \)
- Luminosity: total energy leaving an object in all directions over all wavelengths
- Monochromatic luminosity: \(L_\lambda d\lambda \) = a luminosity only within the wavelength range \(\lambda \) to \(\lambda + d\lambda \).
- Luminosity (blackbody) = \(L = A\sigma T^4 \).
- Luminosity (not quite perfect blackbody) = \(L = \epsilon A\sigma T^4 \).
- Magnitude System
 - 5 magnitudes difference corresponds to a flux ratio of 100X.
 - smaller numbers means brighter
 - apparent magnitude: \(m = 2.5\log_{10} \frac{F}{F_{\text{ref}}} \)
 - absolute magnitude, \(M \): the apparent magnitude of a star at the standard reference distance (10 pc = 32.6 ly).
 - absolute magnitude, \(M = 2.5\log_{10} \frac{L}{L_{\text{ref}}} \) (\(L_{\text{ref}} \) is about \(80 \times L_\odot \)).
 - absolute magnitude is a measure of luminosity, apparent is a measure of brightness.
 - Example: \(M_\odot = 4.76 \), \(m_\odot = -26.7 \), \(L_\odot = 3.826 \times 10^{26} W \)
 - Distance modulus, (m-M),: \((m - M) = 5\log_{10} \frac{d}{10pc} \)
 - Distance modulus: an alternative measure of distance that directly tells you how the brightness of the object differs from its brightness at 10 pc.
- Wave nature of light
 - Light has wave properties: interference pattern formed by double-slit
 - \(c = \lambda \nu \)
 - Time-averaged Poynting Vector: a measure of monochromatic flux
 - Time-averaged Poynting Vector: \(\langle S \rangle = \frac{1}{2\mu_0}E_0B_0 \) (mks) or \(\frac{\epsilon_0}{8\pi}E_0B_0 \) (cgs)
 - Radiation pressure is greater when light is completely reflected than when light is absorbed - transfer of momentum.
 - Radiatio pressure, absorption: \(F_{rad} = \frac{SA}{c} \cos \theta \)
 - Radiatio pressure, reflection: \(F_{rad} = \frac{2SA}{c} \cos^2 \theta \)
• Blackbody radiation
 – Blackbody: an ideal emitter and absorber.
 – Blackbody absorption: 100%
 – Wien’s Law: $\lambda_{\text{max}} T = 0.0029 mK = 2.9 \times 10^7 \text{ÅK} = (5000 \text{Å})(5800K)$
 – Stefan-Boltzmann law: $F_{\text{surf}} = \sigma T^4$
 – Planck’s Law: $B_\lambda(T) = \frac{2hc^2/\lambda^5}{e^{hc/\lambda kT} - 1}$
 – Color indices: $B - V = m_B - m_V = -2.5 \log \left(\int \frac{F_\lambda S_B d\lambda}{\int F_\lambda S_V d\lambda} \right) + C_{B-V}$

Chapter 4

• Special relativity: the physics of high speeds
 • $z = \Delta \lambda / \lambda$
 • $z = \frac{v_r}{c}$ for low v_r
 • $z = \sqrt{1 + \frac{v_r}{c}} - 1$ for high v_r

Chapter 5

• History of spectroscopy
• Kirchoff’s Laws: how absorption, emission and continuous spectra are formed.
 • Space motion of a star: $v = \sqrt{v_r^2 + v_\theta^2}$
 • $E_{\text{photon}} = h\nu = hc/\lambda = pc$
 • Photoelectric Effect: $K_{\text{max}} = h\nu - \phi$
 • Compton Scattering: $\lambda_f - \lambda_i = \frac{h}{m_e c}(1 - \cos \theta)$
 • Bohr model of hydrogen atom - required $L = n\hbar$
 – Energy levels are labeled $n=1$ (ground), 2, 3, 4, etc.
 – $r_n = a_0 n^2$
 – $E_n = -13.6eV n^{-2}$
 – An upward transition means atom has absorbed energy
 – A downward transition means the atom emits a photon