Chapter 16: Acid-Base Equilibria

- In the 1st half of this chapter we will focus on the equilibria that exist in aqueous solutions containing:
 - weak acids
 - polyprotic acids
 - weak bases
 - salts

- use equilibrium tables to determine:
 - equilibrium composition of solutions
 - pH
 - % ionization
 - K_a or K_b

- In the 2nd half of the chapter, our focus will shift to understanding solutions in which there is some combination of acidic and basic species:
 - buffer solutions
 - titration experiments

- We will need to consider that neutralization reactions can/will occur, as well as the equilibria that exist.

- use multiple steps:
 - determine the pH of solutions after neutralization reactions are complete
 - construct and interpret titration curves

Steps for solving weak acid equilibrium problems:
1. Identify all major species in solution.
2. Identify all potential H^+ transfer reactions that could contribute to the $[H_3O^+]_{total}$ in the sol’n.
3. By considering K values, determine the dominant source of H_3O^+ in the solution.
4. Set up the equilibrium calculation based on equilibrium identified in step 3.
5. Solve!
 - $x = [H_3O^+]$
 - solve for pH, % ionization, or K_a
Determine the pH of 0.10 M HCN (aq). For HCN, $K_a = 4.9 \times 10^{-10}$.

1. Identify all major species in solution.
 - this is an aqueous solution of a weak acid, so the major species are: HCN & H$_2$O

2. Identify all potential H$^+$ transfer reactions that could contribute to the $[\text{H}_3\text{O}^+]_{\text{total}}$ in the sol'n.
 - there are 2 possible sources of H$_3$O$^+$ in this sol'n:
 HCN (aq) + H$_2$O (aq) \rightleftharpoons CN$^-$ (aq) + H$_3$O$^+$ (aq); $K_a = 4.9 \times 10^{-10}$
 2 H$_2$O (l) \rightleftharpoons H$_3$O$^+$ (aq) + OH$^-$ (aq); $K_W = 1 \times 10^{-14}$

3. By considering K values, determine the dominant source of H$_3$O$^+$ in the solution.
 - there are 2 possible sources of H$_3$O$^+$ in this sol'n:
 HCN (aq) + H$_2$O (aq) \rightleftharpoons CN$^-$ (aq) + H$_3$O$^+$ (aq); $K_a = 4.9 \times 10^{-10}$
 2 H$_2$O (l) \rightleftharpoons H$_3$O$^+$ (aq) + OH$^-$ (aq); $K_W = 1 \times 10^{-14}$

 - $K_a > K_W$, so the acid ionization of HCN will be the dominant source of H$_3$O$^+$ in his solution.

 - use a simplifying approximation
 Because K_a is very small, the reaction does not proceed very far forward (toward products) before reaching equilibrium.

 We will assume that “x” in the denominator will be negligibly small relative to $[\text{HCN}]_0$.

 - $0.10 - x \approx 0.10$

4. Set up the equilibrium calculation based on equilibrium identified in step 3.

<table>
<thead>
<tr>
<th></th>
<th>HCN (aq) + H$_2$O (l) \rightleftharpoons CN$^-$ (aq) + H$_3$O$^+$ (aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.10 M --- 0 0</td>
</tr>
<tr>
<td>Δ</td>
<td>$-x$ --- $+x$ $+x$</td>
</tr>
<tr>
<td>equil</td>
<td>$(0.10-\text{x})\text{M}$ --- $\times\text{M}$ $\times\text{M}$</td>
</tr>
</tbody>
</table>

 $K_a = \frac{[\text{H}_3\text{O}^+][\text{CN}^-]}{[\text{HCN}]}$; $4.9 \times 10^{-10} = \frac{x^2}{0.10 - x}$
example:
Determine the pH of 0.10 M HCN (aq). For HCN, $K_a = 4.9 \times 10^{-10}$.

solution:

$$4.9 \times 10^{-10} = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}$$

$$x = 7.0 \times 10^{-6}$$

so at equilibrium:

$$[H_3O^+] = [CN^-] = 7.0 \times 10^{-6} \text{ M}$$

$$[HCN] = 0.10 \text{ M}$$

$$pH = -\log (7.0 \times 10^{-6}) = 5.15$$

example:
Determine the pH and % ionization of 0.0100 M CH$_3$COOH (aq). For acetic acid, $K_a = 1.8 \times 10^{-5}$.

Percent Ionization

- What percentage of a weak acid originally present is in its ionized form at equilibrium?

$$\text{percent ionization} = \frac{[HA]_{\text{ionized}}}{[HA]_0} \times 100$$

- percent ionization is another way that we can assess the acidity of a solution and strength of an acid.

$\text{greater % ionization} \rightarrow \text{higher [ion]}$

$\text{higher [ion]} \rightarrow \text{higher [H}_3\text{O}^+]$

$\text{higher [H}_3\text{O}^+] \rightarrow \text{lower pH} \rightarrow \text{more acidic solution}$
Percent Ionization and Acid Concentration

- for a given acid, HA, % ionization will increase as [HA] decreases
- dilution effect - changing concentrations of species in solution results in Q < K

 reaction proceed forward to re-establish equilibrium

 new equilibrium [H₃O⁺] and [A⁻] are higher relative to new [HA]₀

∴ % ionization is greater

Some Comparisons

- compare 2 solutions of different concentration of acetic acid (HC₂H₃O₂, Kₐ = 1.8 x 10⁻⁵)
- compare 2 solutions of different concentration of hydrocyanic acid (HCN, Kₐ = 4.9 x 10⁻¹⁰)
- compare acetic acid and hydrocyanic acid solutions of the same concentration

<table>
<thead>
<tr>
<th></th>
<th>0.010 M H₂O₂</th>
<th>0.025 M H₂O₂</th>
<th>0.025 M HCN</th>
<th>0.10 M HCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H₃O⁺], M</td>
<td>4.2 x 10⁻⁴</td>
<td>6.7 x 10⁻⁴</td>
<td>3.5 x 10⁻⁶</td>
<td>7.0 x 10⁻⁶</td>
</tr>
<tr>
<td>pH</td>
<td>3.38</td>
<td>3.17</td>
<td>5.46</td>
<td>5.15</td>
</tr>
<tr>
<td>% ionization</td>
<td>4.2%</td>
<td>2.7%</td>
<td>0.014%</td>
<td>0.0070%</td>
</tr>
</tbody>
</table>

- Be careful when comparing solutions and making qualitative statements about them.
- You can compare 2 different acids at the same concentration: acid with larger Kₐ is the stronger acid
 ∴ acid solution with larger Kₐ will have:
 higher [H₃O⁺]
 lower pH
 higher % dissociation
- You can compare the same acid at 2 different concentrations: Kₐ is the same, so acid strength is the same
 solution with higher concentration will have:
 higher [H₃O⁺]
 lower pH
 lower % dissociation

Determination of Kₐ from Experimental Data:
Given [HA]₀ and pH

eample:
The pH of 0.250 M HF (aq) is 2.036. Determine the Kₐ for HF.
Determination of K_a from Experimental Data:
Given $[HA]_0$ and % Ionization

example:
A 0.340 M solution of HNO_2 (aq) is 3.65% dissociated at equilibrium. Determine K_a for nitrous acid, and the pH of the solution.

Polyprotic Acids
- acid with more than one acidic proton
- polyprotic acids dissociate in a step-wise manner
each step corresponds to the dissociation of one H^+
each step has a unique K_a value

consider oxalic acid, $\text{H}_2\text{C}_2\text{O}_4$:

1\text{st} dissociation step:
$\text{H}_2\text{C}_2\text{O}_4$ (aq) + H_2O (l) \rightleftharpoons HC_2O_4^- (aq) + H_3O^+ (aq); $K_{a1} = 5.9 \times 10^{-2}$

2\text{nd} dissociation step:
HC_2O_4^- (aq) + H_2O (l) \rightleftharpoons $\text{C}_2\text{O}_4^{2-}$ (aq) + H_3O^+ (aq); $K_{a2} = 6.4 \times 10^{-5}$

- $K_{a1} > K_{a2}$ this is always true for polyprotic acids
- the acids become weaker with each successive dissociation step
 $\text{H}_2\text{C}_2\text{O}_4$ is a stronger acid than HC_2O_4^-
 Why?

example:
Consider a 0.040 M solution of carbonic acid. Determine the pH of this solution as well as the equilibrium concentrations of: $[\text{H}_2\text{CO}_3]$, $[\text{HCO}_3^-]$, $[\text{H}_3\text{O}^+]$, $[\text{CO}_3^{2-}]$, and $[\text{OH}^-]$.

For H_2CO_3, $K_{a1} = 4.3 \times 10^{-7}$ and $K_{a2} = 5.6 \times 10^{-11}$.

1\text{st} ionization equation:
H_2CO_3 (aq) + H_2O (l) \rightleftharpoons HCO_3^- (aq) + H_3O^+ (aq)

2nd ionization equation:
HCO_3^- (aq) + H_2O (l) \rightleftharpoons CO_3^{2-} (aq) + H_3O^+ (aq)
solution:
- because $K_{a1} > K_{a2}$ & $K_{a1} > K_{w}$, the primary source of H_3O^+ in the solution will be the 1st ionization step for H_2CO_3:

| H_2CO_3 (aq) + H_2O (l) \rightleftharpoons HCO$_3^-$ (aq) + H_3O^+ (aq) |
|---|---|---|---|
| initial [] | 0.040 M | --- | 0 | 0 |
| Δ [] | $-x$ | --- | $+x$ | $+x$ |
| equil [] | (0.040–x)M | --- | x M | x M |

- use K_{a1}; solve for x: $x = 1.3 \times 10^{-4}$
 so: $\ [H_2CO_3] \approx 0.040$ M
 $[HCO_3^-] = [H_3O^+] = 1.3 \times 10^{-4}$ M
 $pH = 3.89$

Steps for solving weak base equilibrium problems:
1. Identify all major species in solution.
2. Identify all potential H^+ transfer reactions that could contribute to the $[OH^-]_{total}$ in the sol’n.
3. By considering K values, determine the dominant source of OH^- in the solution.
4. Set up the equilibrium calculation based on equilibrium identified in step 3.
5. Solve!
 - $x = [OH^-]$
 - solve for pH, % ionization, or K_b

example:
Calculate pH and % dissociation of 0.40 M NH$_3$ (aq).
For NH$_3$, $K_b = 1.8 \times 10^{-5}$.

| NH_3 (aq) + H_2O (l) \rightleftharpoons NH$_4^+$ (aq) + OH$^-$ (aq) |
|---|---|---|---|
| initial [] | 0.40 M | --- | 0 | 0 |
| Δ [] | $-x$ | --- | $+x$ | $+x$ |
| equil [] | (0.40–x)M | --- | x M | x M |

solution:
- to determine $[CO_3^{2-}]$ we will have to consider the 2nd ionization step:

| HCO_3^- (aq) + H_2O (l) \rightleftharpoons CO$_3^{2-}$ (aq) + H_3O^+ (aq) |
|---|---|---|---|
| initial [] | 1.3 \times 10$^{-4}$ M | --- | 0 | 1.3 \times 10$^{-4}$ M |
| Δ [] | $-x$ | --- | $+x$ | $+x$ |
| equil [] | (1.3 \times 10$^{-4}$–x)M | --- | x M | (1.3 \times 10$^{-4}$ + x)M |

- use K_{a2}; solve for x: $x = 5.6 \times 10^{-11}$
 so: $[CO_3^{2-}] = 5.6 \times 10^{-11}$ M
- $[OH^-]$? $[OH^-] = K_w/\ [H_3O^+] = 7.7 \times 10^{-11}$ M
Some Comparisons

- compare 2 solutions of different concentration of ammonia (NH₃, K_b = 1.8 x 10⁻⁵)
- compare 2 solutions of different concentration of pyridine (C₅H₅N, K_b = 1.4 x 10⁻⁹)
- compare ammonia and pyridine solutions of the same concentration

<table>
<thead>
<tr>
<th></th>
<th>0.15 M NH₃</th>
<th>0.40 M NH₃</th>
<th>0.40 M C₅H₅N</th>
<th>0.80 M C₅H₅N</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OH⁻], M</td>
<td>0.0016</td>
<td>0.0027</td>
<td>2.4 x 10⁻⁵</td>
<td>3.3 x 10⁻⁵</td>
</tr>
<tr>
<td>pH</td>
<td>11.20</td>
<td>11.43</td>
<td>9.38</td>
<td>9.52</td>
</tr>
<tr>
<td>% ionization</td>
<td>1.1%</td>
<td>0.68%</td>
<td>0.0060%</td>
<td>0.0041%</td>
</tr>
</tbody>
</table>

Be careful when comparing solutions and making qualitative statements about them.

- You can compare 2 different bases at the same concentration: base with larger K_b is the stronger base.
 - base solution with larger K_b will have:
 - higher [OH⁻]
 - higher pH
 - higher % dissociation

- You can compare the same base at 2 different concentrations: K_b is the same, so base strength is the same
 - solution with higher concentration will have:
 - higher [OH⁻]
 - higher pH
 - lower % dissociation

Relationship Between K_a & K_b for Conjugate Acid/Base Pair

- consider the conjugate acid/base pair of NH₃ & NH₄⁺:

 NH₃ (aq) + H₂O (l) ⇌ NH₄⁺ (aq) + OH⁻ (aq)

 $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$

 NH₄⁺ (aq) + H₂O (l) ⇌ NH₃ (aq) + H₃O⁺ (aq)

 $K_a = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$

 so: $K_a \times K_b = \frac{[NH_3][H_3O^+]}{[NH_4^+]} \times \frac{[NH_4^+][OH^-]}{[NH_3]}$

 $K_a \times K_b = [H_3O^+][OH^-]$

 $K_a \times K_b = K_W$

example:

Codeine (C₁₈H₂₁NO₃) is a naturally occurring amine. The pH of a 0.012 M solution of codeine is determined to be 10.14.

Determine the base ionization constant for codeine, and the % ionization of the solution.
Salt Solutions and pH Considerations

- **salt** - an ionic compound
 - soluble salts dissolve in water to produce solutions that may be acidic, basic, or neutral
- consider the cation and anion separately
 - assess the potential acidic or basic nature of each
- recall the inverse nature between strengths in a conjugate acid/base pair:
 - the **stronger** an acid or base, the **weaker** its conjugate
 - the **weaker** an acid or base, the **stronger** its conjugate

Steps for solving salt solution pH problems:

1. Identify all major species in solution.
2. Identify all potential H\(^+\) transfer reactions that could contribute to the \([H_3O^+]_{\text{total}}\) OR \([OH^-]_{\text{total}}\) in the sol’n.
3. By considering K values, determine the dominant source of \(H_3O^+\) OR \(OH^-\) in the solution.
4. Set up the equilibrium calculation based on equilibrium identified in step 3.
5. Solve!
 - \(x = [H_3O^+]\) OR \([OH^-]\)
 - solve for pH

A closer look at a weak acid/conjugate base pair: \(HA & A^-\)

\[
HA (aq) + H_2O (l) \rightleftharpoons A^- (aq) + H_3O^+ (aq)
\]

- the **stronger the acid** (HA), the **weaker its conjugate base** (A\(^-\)):
 - strong monoprotic acids produce conjugate bases that are not effective bases in solution - they are **neutral anions**

Neutral anions are: Cl\(^-\), Br\(^-\), I\(^-\), NO\(_3^-\), ClO\(_4^-\)

- the **weaker the acid** (HA), the **stronger its conjugate base** (A\(^-\)):
 - weak acids produce conjugate bases that can function as bases in solution - they are **basic anions**

Base ionization equilibrium for A\(^-\):

\[
A^- (aq) + H_2O (l) \rightleftharpoons HA (aq) + OH^- (aq); K_b
\]

Examples of basic anions include:

F\(^-\), CO\(_3^{2-}\), ClO\(_2^-\), SO\(_3^{2-}\), PO\(_4^{3-}\), NO\(_2^-\), BrO\(_4^-\)

A closer look at a weak base/conjugate acid pair: \(B & BH^+\)

\[
B (aq) + H_2O (l) \rightleftharpoons BH^+ (aq) + OH^- (aq)
\]

- the **stronger the base** (B), the **weaker its cation**:
 - strong bases produce cations that are not effective acids in solution - they are **neutral cations**

Neutral cations are: Li\(^+\), Na\(^+\), K\(^+\), Rb\(^+\), Cs\(^+\), Ca\(^2+\), Sr\(^2+\), Ba\(^2+\)

- the **weaker the base** (B), the **stronger its conjugate acid** (BH\(^+\)):
 - weak bases produce conjugate acids that can function as acids in solution - they are **acidic cations**

Acid ionization equilibrium for BH\(^+\):

\[
BH^+ (aq) + H_2O (l) \rightleftharpoons B (aq) + H_3O^+ (aq); K_a
\]

Examples of acidic cations include:

NH\(_4^+\), CH\(_3\)NH\(_3^+\), C\(_2\)H\(_5\)NH\(_3^+\), C\(_5\)H\(_5\)NH\(_3^+\), C\(_6\)H\(_5\)NH\(_3^+\)
recall the relationship between K_a and K_b for a conjugate acid/base pair:

$$K_a \times K_b = K_w$$

OR

$$pK_a + pK_b = pK_w$$

and: at $25^\circ C$, $pK_w = -\log(1 \times 10^{-14}) = 14.00$

so: $pK_a + pK_b = 14.00$

salts that produce neutral solutions:

- pH = 7.00 at $25^\circ C$
- neutral cation with a neutral anion

 examples: KNO$_3$, NaCl, Ca(ClO$_4$)$_2$, SrBr$_2$, CsI

salts that produce acidic solutions:

- pH < 7.00 at $25^\circ C$
- type 1: acidic cation with neutral anion

 examples: NH$_4$Cl, CH$_3$NH$_3$NO$_3$, C$_5$H$_5$NHBr

 example problem: calculate the pH of 0.10 M NH$_4$Cl (aq)

 NH_4^+ (aq) + H_2O (l) \Leftrightarrow NH$_3$ (aq) + H$_3$O$^+$ (aq); $K_a = K_{w}/K_b$ for NH$_3$ = 5.6 x 10$^{-10}$

- type 2: neutral cation with anion from a polyprotic acid

 examples: KHSO$_4$, NaHCO$_3$, Ca(HC$_2$O$_4$)$_2$

 example problem: calculate the pH of .20 M Ca(HC$_2$O$_4$)$_2$ (aq)

 HC$_2$O$_4^-$ (aq) + H_2O (l) \Leftrightarrow C$_2$O$_4^{2-}$ (aq) + H$_3$O$^+$ (aq); $K_a = K_{a2}$ for H$_2$C$_2$O$_4$ = 5.1 x 10$^{-5}$

- type 3: hydrated metal cation of high positive charge-density with neutral anion

 recall: [Al(H$_2$O)$_6$]$^{3+}$ (aq) + H_2O (l) \Leftrightarrow Al[$\text{(H}_2\text{O})_5$(OH)]$^{2+}$ (aq) + H$_3$O$^+$ (aq)

 hydrated metal ion can behave as a Bronsted-Lowry acid:

 examples: MgCl$_2$, AlBr$_3$, Zn(NO$_3$)$_2$, Cr(NO$_3$)$_3$

 example problem: calculate the pH of 0.097 M AlCl$_3$ (aq); for [Al(H$_2$O)$_6$]$^{3+}$, $K_a = 1.4 \times 10^{-5}$
salts that produce basic solutions:
- pH > 7.00 at 25°C
- neutral cation with basic anion
 examples: KF, CaSO₄, Na₂CO₃, K₃PO₄, Na₂C₂O₄, NaNO₂

example problem: calculate the pH of 0.20 M NaNO₂ (aq)
NO₂⁻ (aq) + H₂O (l) ⇌ HNO₂ (aq) + OH⁻ (aq);
K_b = K_w/K_a for HNO₂ = 2.2 x 10⁻¹¹

The Common Ion Effect

What happens to the pH of a weak acid (HA) or weak base (B) solution when a salt containing its conjugate is added?
- resulting solution contains a conjugate acid base pair
- calculate and compare [H₃O⁺] or [OH⁻], pH, % ionization
- demonstration of LeChatelier’s Principle

example:
0.10 mol HC₂H₃O₂ and 0.10 mol NaC₂H₃O₂ are combined in a solution with a total volume of 1.0 L.
Determine the [H₃O⁺], pH, and % ionization in this solution. For HC₂H₃O₂, K_a = 1.8 x 10⁻⁵.

the equilibrium that controls the pH of this sol'n:

| HC₂H₃O₂(aq) + H₂O (l) ⇌ C₂H₅O₂⁻ (aq) + H₃O⁺(aq) |
|---|---|---|---|
| initial [] | 0.10 M | --- | 0.10 M | 0 |
| Δ [] | − x | --- | + x | + x |
| equil [] | (0.10−x)M | --- | (0.10+x)M | x M |

for comparison:

<table>
<thead>
<tr>
<th>0.10 M HC₂H₃O₂ (aq) + 0.10 M NaC₂H₃O₂ (aq)</th>
<th>0.10 M HC₂H₃O₂ (aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H₃O⁺]</td>
<td>1.3 x 10⁻³ M</td>
</tr>
<tr>
<td>pH</td>
<td>2.89</td>
</tr>
<tr>
<td>% ionization</td>
<td>1.3%</td>
</tr>
</tbody>
</table>
for comparison:

<table>
<thead>
<tr>
<th></th>
<th>0.15 M NH₃ (aq)</th>
<th>0.15 M NH₃ (aq) + 0.45 M NH₄Cl (aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[OH⁻]</td>
<td>1.6 x 10⁻³ M</td>
<td>6.0 x 10⁻⁶ M</td>
</tr>
<tr>
<td>pH</td>
<td>11.20</td>
<td>8.78</td>
</tr>
<tr>
<td>% ionization</td>
<td>1.1%</td>
<td>0.0040%</td>
</tr>
</tbody>
</table>

Buffer Solutions

- common ion solutions
 sol’ns that contain a conjugate acid/base pair
 HA & A⁻ or B & BH⁺

- solution resists change in pH when small amounts of strong acid (H⁺) or strong base (OH⁻) are added

How does the pH change after the addition of 0.010 mol HCl to 1.00 L of a solution composed of 0.10 M HC₂H₃O₂ & 0.10 M NaC₂H₃O₂ (initial pH = 4.74).

1ˢᵗ: addition of strong acid (H⁺) results in a neutralization reaction (note: Cl⁻ is a spectator ion; this is the net ionic equation):

\[\text{C₂H₃O₂}^- (aq) + \text{H}^+ (aq) \rightarrow \text{HC₂H₃O₂} (aq) \]

2ⁿᵈ: after the strong acid is consumed, equilibrium is established that determines the pH of the solution:

\[\text{HC₂H₃O₂} (aq) \rightleftharpoons \text{C₂H₃O₂}^- (aq) + \text{H}^+ (aq) \]

resulting solution pH = 4.66; \(\Delta \text{pH} = -.08 \)

<table>
<thead>
<tr>
<th></th>
<th>C₂H₃O₂⁻ (aq)</th>
<th>H⁺ (aq)</th>
<th>HC₂H₃O₂ (aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before rxn</td>
<td>0.10 mol</td>
<td>0.010 mol</td>
<td>0.10 mol</td>
</tr>
<tr>
<td>Δ</td>
<td>-0.010 mol</td>
<td>-0.010 mol</td>
<td>+0.010 mol</td>
</tr>
<tr>
<td>after rxn</td>
<td>0.090 mol</td>
<td>0</td>
<td>0.11 mol</td>
</tr>
</tbody>
</table>
How does the pH change after the addition of 0.010 mol HCl to 1.00 L of a solution composed of 0.10 M HC₂H₃O₂ & 0.10 M NaC₂H₃O₂ (initial pH = 4.74).

2nd: after the strong acid is consumed, equilibrium is established that determines the pH of the solution:

\[
\text{HC₂H₃O₂ (aq) + H₂O (l)} \rightleftharpoons \text{C₂H₃O₂⁻ (aq) + H₃O⁺ (aq)}
\]

- initial \([\text{HC₂H₃O₂}]\) and \([\text{C₂H₃O₂⁻}]\) in equilibrium problem determined by consideration of what is in solution after the neutralization reaction is complete

<table>
<thead>
<tr>
<th></th>
<th>HC₂H₃O₂ (aq)</th>
<th>H₂O (l)</th>
<th>C₂H₃O₂⁻ (aq)</th>
<th>H₃O⁺ (aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.11 M</td>
<td>---</td>
<td>0.090 M</td>
<td>0</td>
</tr>
<tr>
<td>Δ [M]</td>
<td>–x</td>
<td>---</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>equil [M]</td>
<td>(0.11–x)M</td>
<td>---</td>
<td>(0.090+x)M</td>
<td>x M</td>
</tr>
</tbody>
</table>

the result of the neutralization reaction:

\[
\text{C₂H₃O₂⁻ (aq) + H⁺ (aq)} \rightarrow \text{HC₂H₃O₂ (aq)}
\]

- \(\text{C₂H₃O₂⁻}\) is consumed
- \(\text{HC₂H₃O₂}\) is formed

[\(\text{C₂H₃O₂⁻}\)] decreases
[\(\text{HC₂H₃O₂}\)] increases

- strong acid, H⁺, is the limiting reactant
- \(\text{H⁺}\) is completely consumed
- pH of solution decreases slightly
- solution becomes slightly more acidic

Consider, again, 0.10 M HC₂H₃O₂ & 0.10 M NaC₂H₃O₂ common ion solution; pH = 4.74.

How does the pH change after the addition of 0.010 mol NaOH to 1.00 L of this solution?

1st: addition of strong base (OH⁻) results in a neutralization reaction (note: Na⁺ is a spectator ion; this is the net ionic equation):

\[
\text{HC₂H₃O₂ (aq) + OH⁻ (aq)} \rightarrow \text{C₂H₃O₂⁻ (aq) + H₂O (l)}
\]

2nd: after the strong base is consumed, equilibrium is established that determines the pH of the solution:

\[
\text{HC₂H₃O₂ (aq)} \rightleftharpoons \text{C₂H₃O₂⁻ (aq) + H⁺ (aq)}
\]

resulting solution pH = 4.82; \(\Delta\text{pH} = +.08\)

How does the pH change after the addition of 0.010 mol NaOH to 1.00 L of a solution composed of 0.10 M HC₂H₃O₂ & 0.10 M NaC₂H₃O₂ (initial pH = 4.74).

1st: addition of strong base (OH⁻) results in a neutralization reaction (note: Na⁺ is a spectator ion; this is the net ionic equation):

- the added strong base (OH⁻) will react with the acid (HC₂H₃O₂) in the buffer solution

<table>
<thead>
<tr>
<th></th>
<th>HC₂H₃O₂ (aq)</th>
<th>OH⁻ (aq)</th>
<th>C₂H₃O₂⁻ (aq)</th>
<th>H₂O (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before rxn</td>
<td>0.10 mol</td>
<td>0.010 mol</td>
<td>0.10 mol</td>
<td>---</td>
</tr>
<tr>
<td>Δ</td>
<td>–0.010 mol</td>
<td>–0.010 mol</td>
<td>+0.010 mol</td>
<td>---</td>
</tr>
<tr>
<td>after rxn</td>
<td>0.090 mol</td>
<td>0</td>
<td>0.11 mol</td>
<td>---</td>
</tr>
</tbody>
</table>
How does the pH change after the addition of 0.010 mol NaOH to 1.00 L of a solution composed of 0.10 M HC$_2$H$_3$O$_2$ & 0.10 M NaC$_2$H$_3$O$_2$ (initial pH = 4.74).

2nd: after the strong base is consumed, equilibrium is established that determines the pH of the solution:

\[
\text{HC}_2\text{H}_3\text{O}_2 \text{(aq)} + \text{H}_2\text{O} \text{(l)} \rightleftharpoons \text{C}_2\text{H}_3\text{O}_2^- \text{(aq)} + \text{H}_3\text{O}^+ \text{(aq)}
\]

- initial [HC$_2$H$_3$O$_2$] and [C$_2$H$_3$O$_2^-$] in equilibrium problem determined by consideration of what is in solution after the neutralization reaction is complete

<table>
<thead>
<tr>
<th></th>
<th>HC$_2$H$_3$O$_2$ (aq) + H$_2$O (l) \rightleftharpoons C$_2$H$_3$O$_2^-$ (aq) + H$_3$O$^+$ (aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.090 M --- 0.11 M 0</td>
</tr>
<tr>
<td>Δ</td>
<td>$-x$ --- $+x$ $+x$</td>
</tr>
<tr>
<td>equil</td>
<td>(0.090$-x$)M --- (0.11$+x$)M x M</td>
</tr>
</tbody>
</table>

the result of the neutralization reaction:

HC$_2$H$_3$O$_2$ (aq) + OH$^-$ (aq) \rightarrow C$_2$H$_3$O$_2^-$ (aq) + H$_2$O (l)

- HC$_2$H$_3$O$_2$ is consumed
- C$_2$H$_3$O$_2^-$ is formed
- [HC$_2$H$_3$O$_2$] decreases
- [C$_2$H$_3$O$_2^-$] increases
- strong base, OH$^-$, is the limiting reactant
- OH$^-$ is completely consumed
- pH of solution increases slightly
- solution becomes slightly more basic

How Does a Buffer Work?

- pH is controlled by [H$^+$]
- in an HA/A$^-$ buffer solution:

\[
\text{HA (aq)} \rightleftharpoons \text{H}^+ \text{(aq)} + \text{A}^- \text{(aq)}
\]

\[
K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} \quad \text{OR} \quad [\text{H}^+] = K_a \frac{[\text{HA}]}{[\text{A}^-]}
\]

- to keep [H$^+$] (and therefore pH) relatively constant, [HA]/[A$^-$] must also remain relatively constant
in buffer solution with HA & A−:

- addition of H+
 neutralization:
 \[H^+ + A^- \rightarrow HA \]

- addition of OH−
 neutralization:
 \[OH^- + HA \rightarrow A^- + H_2O \]

- [HA] increases slightly
 [A−] decreases slightly

- [HA] increases slightly
 [A−] decreases slightly

- [HA] decreases slightly
 [A−] increases slightly

- [HA] decreases slightly
 [A−] increases slightly

- [HA]/[A−] increases
 pH decreases

- [HA]/[A−] decreases
 pH increases

Buffer Capacity and Buffer Failure

- buffer capacity is the amount of strong acid or strong base that can be added to a buffer solution before it fails

- a buffer fails when enough strong acid or strong base is added to cause a \(\Delta pH \geq 1 \) unit

- pH of buffer solution depends on the \([HA]/[A^-]\) ratio

- capacity of a buffer solution depends on magnitude of [HA] and [A−]

Buffer Capacity

- compare 2 HF + NaF buffer solutions:

 \[
 \begin{align*}
 0.25 \text{ M HF} & \quad 0.50 \text{ M NaF} \\
 [HF]/[F^-] & = 0.50 \\
 pH & = 3.76 \\
 \text{after add'n of 0.002 mol} & \\
 H^+ & \text{ to 100 mL solution} \\
 [HF]/[F^-] & = 0.56 \\
 pH & = 3.71 \\
 \Delta pH & = 0.05
 \end{align*}
 \]

 better buffer capacity

 \[
 \begin{align*}
 0.050 \text{ M HF} & \quad 0.10 \text{ M NaF} \\
 [HF]/[F^-] & = 0.50 \\
 pH & = 3.76 \\
 \text{after add'n of 0.002 mol} & \\
 H^+ & \text{ to 100 mL solution} \\
 [HF]/[F^-] & = 0.88 \\
 pH & = 3.51 \\
 \Delta pH & = 0.25
 \end{align*}
 \]

Henderson-Hasselbalch Equation

\[
[H^+] = K_a \frac{[HA]}{[A^-]}
\]

- take \(-\log\) of both sides of equation

\[
\begin{align*}
\text{pH} & = pK_a + \log \frac{[A^-]}{[HA]} \\
& \quad \text{OR} \\
\text{pH} & = pK_a + \log \frac{\text{base}}{\text{acid}}
\end{align*}
\]

- buffer solutions work best when \([\text{base}] / [\text{acid}]\) is close to 1

- when \([\text{base}] = [\text{acid}]\):
 \[[\text{base}] / [\text{acid}] = 1 \quad \text{pH} = pK_a \]
Consider the following acids and their pK_a values:

- $H_2PO_4^-$ $pK_a = 7.21$
- HF $pK_a = 3.14$
- NH_4^+ $pK_a = 9.25$
- $HC_7H_5O_2$ $pK_a = 4.19$

What would be the best acid/conjugate base to prepare a buffer solution with pH = 7.00?

What would be the best acid/conjugate base to prepare a buffer solution with pH = 9.00?

- Since buffer solutions work best when $[\text{base}]/[\text{acid}]$ is close to 1, the best acid to pick for a buffer is one with pK_a close to the desired pH.

 Ideally: pK_a of acid = sol'n pH + 1

Example:
What is the pH of a buffer solution prepared by mixing 100 mL of 0.104 M NaF with 200 mL of 0.275 M HF? For HF, $pK_a = 3.14$.

Example:
What concentration of $NaC_7H_5O_2$ is required to prepare a buffer solution with pH = 4.10 with 0.249 M $HC_7H_5O_2$ (aq)? For $HC_7H_5O_2$, $pK_a = 4.19$.

Acid-Base Titrations: A Quick Review

- titration is an analytical technique in which one reactant is added to another in a very controlled way

- stop when the reaction is just complete
 - at this point there is no limiting reactant, and no excess reactants
 - reactants are completely converted to products
 - stoichiometrically correct mol ratio of reactants
 - this point is called the:
 - stoichiometric point
 - equivalence point
 - end point

- usually some visible indication that you are at the stoichiometric point (use of indicators)

Acid-Base Titrations

- we will look in detail at the following titrations:
 - strong acid + strong base
 - weak acid + strong base
 - strong acid + weak base

- for each we will:
 - calculate the pH at points before, at, and beyond the stoichiometric point
 - discuss characteristics of each type of titration
 - create and interpret titration curves

- end with a discussion of acid-base indicators
Strong Acid + Strong Base Titrations

basic strategy:

1. write the *net ionic equation* for the neutralization reaction that will occur
2. using V and M, calculate mol of each reactant present
3. set up a reaction table; identify the limiting and excess reactant
4. determine [H\(^+\)] or [OH\(^-\)] after neutralization reaction is complete
 remember to use the total solution volume!
5. calculate pH of solution

example:

- 40.0 mL of 0.110 M HCl (aq) is titrated with 0.095 M NaOH (aq).

 - **neutralization reaction (Na\(^+\) and Cl\(^-\) spectator ions):**
 \[\text{H}^+ (aq) + \text{OH}^- (aq) \rightarrow \text{H}_2\text{O} (l) \]

 - calculate mol H\(^+\) (aq):
 \[
 \text{mol H}^+ = (0.0400 \text{ L})(0.110 \text{ mol/L}) \\
 = 0.00440 \text{ mol H}^+
 \]

 - calculate volume NaOH (aq) required to reach the stoichiometric point:
 \[
 0.00440 \text{ mol H}^+ \times \frac{1 \text{ mol OH}^-}{1 \text{ mol H}^+} \times \frac{1 \text{ L soln}}{0.095 \text{ mol OH}^-} = 0.0463 \text{ L or 46.3 mL}
 \]

Strong Acid + Strong Base Titrations

example:

40.0 mL of 0.110 M HCl (aq) is titrated with 0.095 M NaOH (aq).

Determine the following:

- initial pH of the solution
- pH after the addition of 30.0 mL of NaOH
- pH at the stoichiometric point
- pH after the addition of 60.0 mL NaOH

- Determine the initial pH; *pH of the solution before adding any NaOH (aq).*

 another way to say this . . .

 What is the pH of 0.110 M HCl (aq)?

 \[
 [\text{H}^+] = 0.110 \text{ M} \\
 \text{pH} = – \log (0.110) = 0.96
 \]
Determine the pH after the addition of 30.0 mL NaOH (aq).

\[\text{mol OH}^- \text{added} = (0.0300 \text{ L})(0.095 \text{ mol/L}) = 0.0029 \text{ mol OH}^- \]

- set up a reaction table to identify limiting and excess reactant:

<table>
<thead>
<tr>
<th>H(^+) (aq)</th>
<th>OH(^-) (aq)</th>
<th>(\rightarrow) H(_2)O (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before rxn:</td>
<td>0.00440 mol</td>
<td>0.0029 mol</td>
</tr>
<tr>
<td>change:</td>
<td>-0.0029 mol</td>
<td>-0.0029 mol</td>
</tr>
<tr>
<td>after rxn:</td>
<td>0.0015 mol</td>
<td>0</td>
</tr>
</tbody>
</table>

Example:
40.0 mL of 0.110 M HCl (aq) is titrated with 0.095 M NaOH (aq).

- Determine [excess reactant] after neutralization reaction is complete:

\[[H^+] = \frac{\text{mol H}^+ \text{after rxn}}{\text{total sol'n volume}} \]

\[[H^+] = \frac{0.0015 \text{ mol H}^+}{(0.0400 + 0.0300) \text{ L}} \]

\[[H^+] = 0.021 \text{ M} \]

\[\text{pH} = 1.68 \]

Example:
40.0 mL of 0.110 M HCl (aq) is titrated with 0.095 M NaOH (aq).

- Determine the pH at the stoichiometric point.

46.3 mL NaOH (aq) added to reach stoichiometric pt at stoichiometric point:

\[\text{mol OH}^- \text{added} = \text{mol H}^+ \text{present} = 0.00440 \text{ mol} \]

- set up reaction table:

<table>
<thead>
<tr>
<th>H(^+) (aq)</th>
<th>OH(^-) (aq)</th>
<th>(\rightarrow) H(_2)O (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before rxn:</td>
<td>0.00440 mol</td>
<td>0.0044 mol</td>
</tr>
<tr>
<td>change:</td>
<td>-0.0044 mol</td>
<td>-0.0044 mol</td>
</tr>
<tr>
<td>after rxn:</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- after reaction the solution is neutral; pH = 7.00

Example:
40.0 mL of 0.110 M HCl (aq) is titrated with 0.095 M NaOH (aq).

- Determine the pH after the addition of 60.0 mL NaOH (aq).

\[\text{mol OH}^- \text{added} = (0.0600 \text{ L})(0.095 \text{ mol/L}) = 0.0057 \text{ mol OH}^- \]

- set up reaction table to identify limiting and excess reactant:

<table>
<thead>
<tr>
<th>H(^+) (aq)</th>
<th>OH(^-) (aq)</th>
<th>(\rightarrow) H(_2)O (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>before rxn:</td>
<td>0.00440 mol</td>
<td>0.0057 mol</td>
</tr>
<tr>
<td>change:</td>
<td>-0.0044 mol</td>
<td>-0.0044 mol</td>
</tr>
<tr>
<td>after rxn:</td>
<td>0</td>
<td>0.0013 mol</td>
</tr>
</tbody>
</table>
example:
40.0 mL of 0.110 M HCl (aq) is titrated with 0.095 M NaOH (aq).

- Determine [excess reactant] after neutralization reaction is complete:

\[[\text{OH}^-] = \frac{\text{mol OH}^-}{\text{total sol'n volume}} \]

\[[\text{OH}^-] = \frac{0.0013 \text{ mol}}{(0.0400 + 0.0600) \text{ L}} \]

\[[\text{OH}^-] = 0.013 \text{ M} \]

pOH = 1.89; pH = 12.11

Strong Acid/Strong Base Titrations:
- Consider the titration of 40.0 mL of 0.110 M HCl (aq) with 0.095 M NaOH (aq).

<table>
<thead>
<tr>
<th>mL NaOH added</th>
<th>total sol'n vol.</th>
<th>[H3O+] after rxn</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>before stoichiometric point:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>40</td>
<td>0.110 M</td>
<td>0.96</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>0.087 M</td>
<td>1.07</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>0.070 M</td>
<td>1.13</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>0.021 M</td>
<td>1.68</td>
</tr>
<tr>
<td>45</td>
<td>85</td>
<td>0.012 M</td>
<td>1.92</td>
</tr>
<tr>
<td>46</td>
<td>86</td>
<td>3.5 x 10^-7 M</td>
<td>3.46</td>
</tr>
<tr>
<td>at stoichiometric point:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.3</td>
<td>86.3</td>
<td>1.0 x 10^-7 M</td>
<td>7.00</td>
</tr>
<tr>
<td>beyond stoichiometric point:</td>
<td></td>
<td>[OH^-] after rxn</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>87</td>
<td>0.00115 M</td>
<td>11.06</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>0.0044 M</td>
<td>11.64</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>0.0013 M</td>
<td>12.11</td>
</tr>
<tr>
<td>70</td>
<td>110</td>
<td>0.020 M</td>
<td>12.31</td>
</tr>
<tr>
<td>80</td>
<td>120</td>
<td>0.027 M</td>
<td>12.43</td>
</tr>
</tbody>
</table>

Weak Acid + Strong Base Titrations

strategy:
1. write the net ionic equation for the neutralization reaction that will occur
 - strong base is completely ionized
 - weak acid is only partially ionized
2. using V and M, calculate mol of each reactant present
3. set up a reaction table; identify the limiting and excess reactant

notes:
- start at low (acidic) pH
- pH < 7 before stoichiometric point (OH^- limiting reactant)
- pH = 7 at stoichiometric point (neutral solution)
- pH > 7 beyond stoichiometric point (H^+ limiting reactant)
- end at high (basic) pH
4. Identify the species present when the neutralization reaction is complete, and determine which of them are key to determining the pH of the solution.
 - Before the stoichiometric point, the neutralization reaction results in a HA/A⁻ buffer solution.
 - At the stoichiometric point, the base ionization of A⁻ will determine the pH.
 - Beyond the stoichiometric point, excess OH⁻ determines the pH.

5. Using post-neutralization concentrations of species, set up the appropriate calculation and determine pH of solution.

Example:
30.0 mL of 0.125 M HC₃H₄O₂ (aq) is titrated with 0.100 M NaOH (aq).

Determine the following:
- Initial pH of the solution.
- pH after the addition of 20.0 mL of NaOH.
- pH at the stoichiometric point.
- pH after the addition of 50.0 mL NaOH.

Neutralization reaction (Na⁺ spectator ion):

\[\text{HC}_2\text{H}_3\text{O}_2\text{ (aq)} + \text{OH}^-\text{ (aq)} \rightarrow \text{C}_2\text{H}_3\text{O}_2^-\text{ (aq)} + \text{H}_2\text{O} \ (l) \]

Calculate mol HC₃H₄O₂ (aq):
\[
\text{mol HC}_2\text{H}_3\text{O}_2 = (0.0300 \text{ L})(0.125 \text{ mol/L}) = 0.00375 \text{ mol HC}_2\text{H}_3\text{O}_2
\]

Calculate volume NaOH (aq) required to reach the stoichiometric point:
\[
0.00375 \text{ mol HC}_2\text{H}_3\text{O}_2 \times \frac{\text{1 mol OH}^-}{\text{1 mol HC}_2\text{H}_3\text{O}_2} \times \frac{\text{1 L soln}}{\text{0.100 mol OH}^-} = 0.0375 \text{ L or 37.5 mL}
\]

Another way to say this . . .

What is the pH of 0.125 M HC₂H₃O₂ (aq)?

Weak acid calculation; \(K_a \) for HC₂H₃O₂ = 1.8 \times 10^{-5}

\[x = [\text{H}^+] = 0.0015 \text{ M} \]
\[\text{pH} = -\log (0.0015) = 2.82 \]
example:
30.0 mL of 0.125 M HC$_2$H$_3$O$_2$ (aq) is titrated with 0.100 M NaOH.

- Determine the pH after the addition of 20.0 mL NaOH (aq).

\[
\text{mol OH}^- \text{ added} = (0.0200 \text{ L})(0.100 \text{ mol/L}) = 0.00200 \text{ mol OH}^-
\]

- Set up a reaction table to identify limiting and excess reactant:

<table>
<thead>
<tr>
<th>before rxn:</th>
<th>HC$_2$H$_3$O$_2$</th>
<th>OH$^-$</th>
<th>\rightarrow</th>
<th>C$_2$H$_3$O$_2^-$</th>
<th>+</th>
<th>H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol HC$_2$H$_3$O$_2$</td>
<td>.00375 mol</td>
<td>.00200 mol</td>
<td>0</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mol OH$^-$</td>
<td>-.00200 mol</td>
<td>-.00200 mol</td>
<td>+.00200 mol</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>after rxn:</td>
<td>.00175 mol</td>
<td>0</td>
<td>.00200 mol</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This is a buffer solution
determine [H$^+$] and pH by using an equilibrium table
 OR
 the Henderson-Hasselbalch equation

\[
\text{pH} = 4.74 + \log \frac{.0400}{.0350} \\
pH = 4.80
\]
example:
30.0 mL of 0.125 M HC₂H₃O₂ (aq) is titrated with 0.100 M NaOH.

- after the neutralization reaction, HC₂H₃O₂ and OH⁻ are completely consumed
- base ionization of C₂H₃O₂⁻ controls the pH of sol’n:
 \[\text{C}_2\text{H}_3\text{O}_2^- \text{(aq)} + \text{H}_2\text{O} (l) \rightleftharpoons \text{HC}_2\text{H}_3\text{O}_2 \text{(aq)} + \text{OH}^- \text{(aq)} \]
 \[K_b = K_w/(K_a \text{ for HC}_2\text{H}_3\text{O}_2) = 5.6 \times 10^{-10} \]
- determine [C₂H₃O₂⁻] after neutralization reaction:
 \[[\text{C}_2\text{H}_3\text{O}_2^-] = \frac{0.00375 \text{ mol}}{0.0675 \text{ L}} = 0.0556 \text{ M} \]

example:
30.0 mL of 0.125 M HC₂H₃O₂ (aq) is titrated with 0.100 M NaOH.
- the equilibrium table and calculation:

<table>
<thead>
<tr>
<th></th>
<th>C₂H₃O₂⁻</th>
<th>H₂O</th>
<th>⇌</th>
<th>HC₂H₃O₂</th>
<th>OH⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>0.0556 M</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ</td>
<td>–x</td>
<td>---</td>
<td>+x</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>equil</td>
<td>(0.0556 –x) M</td>
<td>---</td>
<td>x M</td>
<td>x M</td>
<td></td>
</tr>
</tbody>
</table>
 \[K_b = 5.6 \times 10^{-10} = \frac{x^2}{0.0556 - x} \]
- solve for x: \[x = [\text{OH}^-] = 5.6 \times 10^{-6} \text{ M} \]
 \[\text{pOH} = 5.25 \]
 \[\text{pH} = 8.75 \]
- for a weak acid titrated with a strong base, the pH > 7 at the stoichiometric point

example:
30.0 mL of 0.125 M HC₂H₃O₂ (aq) is titrated with 0.100 M NaOH.
- Determine the pH after the addition of 50.0 mL NaOH (aq).
 \[\text{mol OH}^- \text{ added} = (0.0500 \text{ L})(0.100 \text{ mol/L}) \]
 \[= 0.00500 \text{ mol OH}^- \]
- set up a reaction table to identify limiting and excess reactant:

<table>
<thead>
<tr>
<th></th>
<th>HC₂H₃O₂</th>
<th>OH⁻</th>
<th>→</th>
<th>C₂H₃O₂⁻</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>before rxn:</td>
<td>0.00375 mol</td>
<td>0.00500 mol</td>
<td>0</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>change:</td>
<td>–0.00375 mol</td>
<td>–0.00375 mol</td>
<td>+0.00375 mol</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>after rxn:</td>
<td>0</td>
<td>0.00125 mol</td>
<td>0.00375 mol</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

\[[\text{OH}^-] = \frac{0.00125 \text{ mol}}{(0.0300 + 0.0500) \text{ L}} \]
\[[\text{OH}^-] = 0.0156 \text{ M} \]
\[\text{pOH} = 1.81; \quad \text{pH} = 12.19 \]
Weak Acid/Strong Base Titrations:
- Consider the titration of 30.0 mL of 0.125 M HC$_2$H$_3$O$_2$ (aq) with 0.100 M NaOH (aq).

<table>
<thead>
<tr>
<th>mL NaOH added</th>
<th>total sol'n vol.</th>
<th>[H$_3$O$^+$] after rxn</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>1.5 x 10$^{-3}$ M</td>
<td>2.82</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>1.2 x 10$^{-3}$ M</td>
<td>3.83</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>5.0 x 10$^{-4}$ M</td>
<td>4.30</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>1.6 x 10$^{-4}$ M</td>
<td>4.80</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>4.6 x 10$^{-5}$ M</td>
<td>5.14</td>
</tr>
<tr>
<td>35</td>
<td>65</td>
<td>1.3 x 10$^{-5}$ M</td>
<td>5.89</td>
</tr>
<tr>
<td>37</td>
<td>67</td>
<td>2.5 x 10$^{-5}$ M</td>
<td>6.11</td>
</tr>
</tbody>
</table>

- at stoichiometric point:

<table>
<thead>
<tr>
<th>before stoichiometric point:</th>
<th>after stoichiometric point:</th>
</tr>
</thead>
<tbody>
<tr>
<td>before stoichiometric point:</td>
<td>at stoichiometric point:</td>
</tr>
<tr>
<td>37.5 mL</td>
<td>67.5 mL</td>
</tr>
<tr>
<td>0.00375 mol</td>
<td>0.001875 mol</td>
</tr>
<tr>
<td>0.001875 mol</td>
<td>0.001875 mol</td>
</tr>
<tr>
<td>0.001875 mol</td>
<td>0.00357 mol</td>
</tr>
</tbody>
</table>

- beyond stoichiometric point:

<table>
<thead>
<tr>
<th>beyond stoichiometric point:</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>11.56</td>
</tr>
<tr>
<td>50</td>
<td>12.19</td>
</tr>
<tr>
<td>60</td>
<td>12.40</td>
</tr>
<tr>
<td>75</td>
<td>12.55</td>
</tr>
</tbody>
</table>

Titration Curve for Weak Acid + Strong Base

- start at low (acidic) pH
- pH < 7 before stoichiometric point (OH$^-$ limiting reactant)
- pH > 7 at stoichiometric point (basic solution)
- pH > 7 beyond stoichiometric point (H$^+$ limiting reactant)
- end at high (basic) pH

Example:

30.0 mL of 0.125 M HC$_2$H$_3$O$_2$ (aq) is titrated with 0.100 M NaOH.
- an important point in a weak acid + strong base titration is the **half-way point**
 - half-way to the stoichiometric point
 - vol required = $\frac{1}{2}$ (vol to reach stoich.pt.)
- for this titration:
 - vol required = $\frac{1}{2}$ (37.5 mL)
 - \therefore half-way to the stoichiometric point is after the addition of 18.75 mL NaOH

Example:

30.0 mL of 0.125 M HC$_2$H$_3$O$_2$ (aq) is titrated with 0.100 M NaOH.
- Determine the pH after the addition of 18.75 mL NaOH (aq).
 - $\text{mol OH}^-\text{added} = (0.01875 \text{ L})(0.100 \text{ mol/L})$
 - $= 0.001875 \text{ mol OH}^-$
- set up a reaction table to identify limiting and excess reactant:

<table>
<thead>
<tr>
<th>before rxn:</th>
<th>change:</th>
<th>after rxn:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC$_2$H$_3$O$_2$</td>
<td>OH$^-$</td>
<td>C$_2$H$_3$O$_2^-$</td>
</tr>
<tr>
<td>.00375 mol</td>
<td>-.001875 mol</td>
<td>.001875 mol</td>
</tr>
<tr>
<td>.001875 mol</td>
<td>.001875 mol</td>
<td>.001875 mol</td>
</tr>
</tbody>
</table>
Strong Acid + Weak Base Titrations

30.0 mL of 0.125 M HC₂H₃O₂ (aq) is titrated with 0.100 M NaOH.

- determine [HC₂H₃O₂] and [C₂H₃O₂⁻] after neutralization reaction is complete:

 \[
 [\text{HC}_2\text{H}_3\text{O}_2] = \frac{0.01875 \text{ mol}}{0.04875 \text{ L}} \quad [\text{C}_2\text{H}_3\text{O}_2^-] = \frac{0.01875 \text{ mol}}{0.04875 \text{ L}}
 \]

 \[
 [\text{HC}_2\text{H}_3\text{O}_2] = 0.0385 \text{ M} \quad [\text{C}_2\text{H}_3\text{O}_2^-] = 0.0385 \text{ M}
 \]

- this is a buffer solution with [acid] = [base]

- using Henderson-Hasselbalch (pKₐ = 4.74):

 \[
 \text{pH} = 4.74 + \log \frac{0.0385}{0.0385}
 \]

 \[
 \text{pH} = \text{pK}_a = 4.74
 \]

- at the half-way point in a weak + strong titration, the pH of the solution equals the pKₐ of the acid

Strong Acid + Weak Base Titrations

example:

30.0 mL of 0.125 M HC₂H₃O₂ (aq) is titrated with 0.100 M NaOH.

- determine [HC₂H₃O₂] and [C₂H₃O₂⁻] after neutralization reaction is complete:

 \[
 [\text{HC}_2\text{H}_3\text{O}_2] = \frac{0.01875 \text{ mol}}{0.04875 \text{ L}} \quad [\text{C}_2\text{H}_3\text{O}_2^-] = \frac{0.01875 \text{ mol}}{0.04875 \text{ L}}
 \]

 \[
 [\text{HC}_2\text{H}_3\text{O}_2] = 0.0385 \text{ M} \quad [\text{C}_2\text{H}_3\text{O}_2^-] = 0.0385 \text{ M}
 \]

- this is a buffer solution with [acid] = [base]

- using Henderson-Hasselbalch (pKₐ = 4.74):

 \[
 \text{pH} = 4.74 + \log \frac{0.0385}{0.0385}
 \]

 \[
 \text{pH} = \text{pK}_a = 4.74
 \]

- at the half-way point in a weak + strong titration, the pH of the solution equals the pKₐ of the acid

Strong Acid + Weak Base Titrations

4. identify the species present when the neutralization reaction is complete, and determine which of them are key to determining the pH of the solution

- before the stoichiometric point, the neutralization reaction results in a B/BH⁺ buffer solution

- at the stoichiometric point, the acid ionization of BH⁺ will determine the pH

- beyond the stoichiometric point excess H⁺ determines the pH

5. using post-neutralization concentrations of species, set up the appropriate calculation and determine pH of solution

Strong Acid + Weak Base Titrations

strategy:

1. write the *net ionic equation* for the neutralization reaction that will occur

 - strong acid is completely ionized
 - weak base is only partially ionized

2. using V and M, calculate mol of each reactant present

3. set up a reaction table; identify the limiting and excess reactant

example:

20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃ (aq).

Determine the following:

- initial pH of the solution
- pH after the addition of 10.0 mL of HNO₃
- pH at the stoichiometric point
- pH after the addition of 50.0 mL HNO₃
example:
20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃.

- neutralization reaction (NO₃⁻ spectator ion):
 \[\text{CH₃NH₂ (aq)} + \text{H}^+ (aq) \rightarrow \text{CH₃NH₃}^+ (aq) \]

- calculate mol CH₃NH₂ (aq):
 \[\text{mol CH₃NH₂} = (0.0200 \text{ L})(1.20 \text{ mol/L}) = 0.0240 \text{ mol CH₃NH₂} \]

- calculate volume HNO₃ (aq) required to reach the stoichiometric point:
 \[0.0240 \text{ mol CH₃NH₂} \times \frac{1 \text{ mol H}^+}{1 \text{ mol CH₃NH₂}} \times \frac{1 \text{ L sol'n}}{0.750 \text{ mol H}^+} = 0.0320 \text{ L or 32.0 mL} \]

example:
20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃.

- Determine the initial pH; \textit{pH of the solution before adding any CH₃NH₂ (aq)}.
 another way to say this . . .
 \textit{What is the pH of 1.20 M CH₃NH₂ (aq)}?
 weak base calculation; \(K_b\) for CH₃NH₂ = \(3.7 \times 10^{-4}\)
 \[x = [\text{OH}^-] = 0.021 \text{ M} \]
 \[\text{pOH} = - \log (0.021) = 1.68 \]
 \[\text{pH} = 12.32 \]

example:
20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃.

- determine [CH₃NH₂] and [CH₃NH₃⁺] after neutralization reaction is complete:
 \[[\text{CH₃NH₂}] = \frac{0.0165 \text{ mol}}{(0.200 + 0.0100) \text{ L}} \]
 \[[\text{CH₃NH₃}^+] = \frac{0.00750 \text{ mol}}{(0.200 + 0.0100) \text{ L}} \]
 \[[\text{CH₃NH₂}] = 0.550 \text{ M} \]
 \[[\text{CH₃NH₃}^+] = 0.250 \text{ M} \]

- this is a buffer solution
 determine [OH⁻] and pH by using an equilibrium table

 \[\text{OR} \]

 the Henderson-Hasselbalch equation
example:
20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃.

- using an equilibrium table ($K_b = 3.7 \times 10^{-4}$):

<table>
<thead>
<tr>
<th>CH₃NH₂</th>
<th>+</th>
<th>H₂O</th>
<th>⇌</th>
<th>CH₃NH₃⁺</th>
<th>+</th>
<th>OH⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial []:</td>
<td>.550 M</td>
<td>---</td>
<td>.250 M</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ []:</td>
<td>− x</td>
<td>---</td>
<td>+ x</td>
<td>+ x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equil []:</td>
<td>(.550 −x)M</td>
<td>---</td>
<td>(.250+x) M</td>
<td>x M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- using Henderson-Hasselbalch (pK_a of CH₃NH₃⁺ = 10.57):

$$pH = 10.57 + \log \frac{.550}{.250}$$

$$pH = 10.91$$

example:
20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃.

- determine the pH at the stoichiometric point.

32.0 mL HNO₃ (aq) added to reach stoichiometric pt at stoichiometric point:

$$\text{mol } H^+ \text{ added} = \text{mol CH₃NH₂ present} = 0.0240 \text{ mol}$$

- set up reaction table:

<table>
<thead>
<tr>
<th>before rxn:</th>
<th>CH₃NH₂</th>
<th>+</th>
<th>H⁺</th>
<th>→</th>
<th>CH₃NH₃⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol</td>
<td>.0240 mol</td>
<td>.0240 mol</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>change:</td>
<td>−.0240 mol</td>
<td>−.0240 mol</td>
<td>+.0240 mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>after rxn:</td>
<td>0</td>
<td>0</td>
<td>.0240 mol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

example:
20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃.

- after the neutralization reaction, CH₃NH₂ and H⁺ are completely consumed
- acid ionization of CH₃NH₃⁺ controls the pH of sol'n:

$$\text{CH₃NH₃⁺ (aq)} \rightleftharpoons \text{CH₃NH₂ (aq)} + \text{H⁺ (aq)}$$

$$K_a = K_w/K_b \text{ for CH₃NH₂} = 2.7 \times 10^{-11}$$

- determine $[\text{CH₃NH₃⁺}]$ after neutralization reaction:

$$[\text{CH₃NH₃⁺}] = \frac{.0240 \text{ mol}}{.0520 \text{ L}} = 0.462 \text{ M}$$

- solve for x:

$$x = [H^+] = 3.5 \times 10^{-6} \text{ M}$$

$$pH = 5.46$$

- for a weak base titrated with a strong acid, the pH < 7 at the stoichiometric point
Determine the pH after the addition of 50.0 mL HNO₃ (aq).

\[\text{mol H}^+ \text{ added} = (0.0500 \text{ L})(0.750 \text{ mol/L}) = 0.0375 \text{ mol H}^+ \]

- set up a reaction table to identify limiting and excess reactant:

<table>
<thead>
<tr>
<th>before rxn</th>
<th>CH₃NH₂</th>
<th>+</th>
<th>H⁺</th>
<th>→</th>
<th>CH₃NH₃⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>before rxn</td>
<td>.0240 mol</td>
<td>.0375 mol</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>change</td>
<td>-.0240 mol</td>
<td>-.0240 mol</td>
<td>+.0240 mol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>after rxn</td>
<td>0</td>
<td>.0135 mol</td>
<td>.0240 mol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- determine [excess reactant] after neutralization

reaction is complete:

\[[\text{H}^+] = \frac{\text{mol H}^+}{\text{total sol'n volume}} \]

\[[\text{H}^+] = \frac{0.0135 \text{ mol}}{(0.0200 + 0.0500) \text{ L}} \]

\[[\text{H}^+] = 0.193 \text{ M} \]

\[\text{pH} = 0.741 \]

20.0 mL of 1.20 M CH₃NH₂ (aq) is titrated with 0.750 M HNO₃.

- determine [CH₃NH₂] & [CH₃NH₃⁺] after neutralization

reaction is complete:

\[[\text{CH₃NH₂}] = \frac{0.0120 \text{ mol}}{0.0360 \text{ L}} \quad [\text{C₂H₃O₂⁻}] = \frac{0.0120 \text{ mol}}{0.0360 \text{ L}} \]

\[[\text{HC₂H₃O₂}] = 0.330 \text{ M} \quad [\text{C₂H₃O₂⁻}] = 0.330 \text{ M} \]

- this is a buffer solution with [acid] = [base]

- using Henderson-Hasselbalch (pKₐ = 10.57):

\[\text{pH} = 10.57 + \log \frac{0.330}{0.330} \]

\[\text{pH} = \text{pK}_a = 10.57 \]

- at the half-way point in a weak + strong titration, the pH of the solution equals the pKₐ of the acid
Weak Base/Strong Acid Titrations:
- Consider the titration of 20.0 mL of 1.20 M CH\(_3\)NH\(_2\) (aq) with 0.75 M HNO\(_3\) (aq).

<table>
<thead>
<tr>
<th>mL HNO(_3) added</th>
<th>total sol’n vol.</th>
<th>[OH(^-)] after rxn</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>0.021 M</td>
<td>12.32</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>0.0020 M</td>
<td>11.30</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>8.1 x 10(^{-4}) M</td>
<td>10.91</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>3.7 x 10(^{-4}) M</td>
<td>10.35</td>
</tr>
<tr>
<td>25</td>
<td>45</td>
<td>2.2 x 10(^{-4}) M</td>
<td>10.01</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
<td>2.5 x 10(^{-4}) M</td>
<td>9.40</td>
</tr>
<tr>
<td>32</td>
<td>52</td>
<td>3.5 x 10(^{-6}) M</td>
<td>5.46</td>
</tr>
<tr>
<td>35</td>
<td>55</td>
<td>0.042 M</td>
<td>1.38</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>0.100 M</td>
<td>1.00</td>
</tr>
<tr>
<td>45</td>
<td>65</td>
<td>0.151 M</td>
<td>0.821</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>0.193 M</td>
<td>0.714</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>0.263 M</td>
<td>0.580</td>
</tr>
</tbody>
</table>

\[\text{HIn} (aq) + H_2O (l) \rightleftharpoons In^- (aq) + H_3O^+ (aq)\]

Acid-Base Indicators
- An indicator is used to **indicate** the stoichiometric point in a titration - typically by change in color.
- You want to choose an indicator that will change color very close to the stoichiometric point in your titration.
- Results in minimal experimental error.
- pH of indicator color change should be close (±1) to pH at stoichiometric point.
- Acid-base indicators tend to be large organic molecules that are weak acids.

Titration Curve for Strong Acid + Weak Base

- Start at high (basic) pH.
- pH > 7 before stoichiometric point (H\(^+\) limiting reactant).
- pH < 7 at stoichiometric point (acidic solution).
- pH < 7 beyond stoichiometric point (OH\(^-\) limiting reactant).
- End at low (acidic) pH.

Acid-Base Indicators
- A few examples of indicators:

 - **phenolphthalein**
 - Acid form: colorless
 - Base form: pink
 - pH range of color change: 8 – 10
 - **bromocresol green**
 - Acid form: yellow
 - Base form: blue
 - pH range of color change: 3.8 – 5.3
 - **methyl red**
 - Acid form: orange
 - Base form: yellow
 - pH range of color change: 4.2 – 6.2
Acid-Base Indicators

- The color of an indicator solution depends on the pH (and $[H_3O^+]$) and the relative amounts of HIn and In^- present.

$$HIn (aq) + \text{H}_2\text{O} (l) \rightleftharpoons In^- (aq) + H_3O^+ (aq)$$

\[K_{In} = \frac{[In^-][H_3O^+]}{[HIn]} \quad ; \quad [H_3O^+] = K_{In} \frac{[HIn]}{[In^-]} \]

- pH affects the equilibrium position, and therefore the ratio of acid form : base form of indicator in sol’n.

2 extremes:

- In acidic solution:
 - Low pH
 - High $[H_3O^+]$
 - Equilibrium position far to the left
 - $[HIn]$ high, $[In^-]$ low
 - Indicator is in its acid form and color

- In basic solution:
 - High pH
 - Low $[H_3O^+]$
 - Equilibrium position far to the right
 - $[HIn]$ low, $[In^-]$ high
 - Indicator is in its base form and color

<table>
<thead>
<tr>
<th>Indicator name</th>
<th>pH range for color change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl violet</td>
<td>yellow / violet</td>
</tr>
<tr>
<td>Thymol blue (acidic range)</td>
<td>red / yellow</td>
</tr>
<tr>
<td>Bromphenol blue</td>
<td>yellow / blue</td>
</tr>
<tr>
<td>Methyl orange</td>
<td>red / yellow</td>
</tr>
<tr>
<td>Bromcresol green</td>
<td>yellow / blue</td>
</tr>
<tr>
<td>Methyl red</td>
<td>red / yellow</td>
</tr>
<tr>
<td>Bromthymol blue</td>
<td>yellow / blue</td>
</tr>
<tr>
<td>Thymol blue (basic range)</td>
<td>yellow / blue</td>
</tr>
<tr>
<td>Phenolphthalein</td>
<td>colorless / pink</td>
</tr>
<tr>
<td>Alizarin yellow R</td>
<td>yellow / red</td>
</tr>
</tbody>
</table>
Choosing an Indicator for a Titration

- In general, an indicator will change color at a solution pH = \(pK_{In} + 1 \).

- You should choose an indicator with \(pK_{In} \) value that is close to the pH of the solution at the stoichiometric point of your titration.
Final Thoughts on Acid-Base Titrations

- neutralization reactions happen 1st fast
go to completion
- set up reaction table (with mol of species) for the neutralization reaction
- assess what is in solution when the neutralization reaction is complete
- calculate post-neutralization [] of important species
 \[[] = \text{mol} \div \text{total sol'n volume} \]

- if \(H_3O^+ \) or \(OH^- \) is present after the neutralization reaction, go straight to pH calculation
 - at any point in a strong acid + strong base titration
 - beyond the stoichiometric point in weak + strong titration
- if HA & A\(^-\) or B & BH\(^+\) are present after the neutralization reaction:
 - buffer solution – use equilibrium calculation or Henderson-Hasselbalch equation
 - before the stoichiometric point in weak + strong titration
- if A\(^-\) or BH\(^+\) are present after the neutralization reaction:
 - equilibrium calculation based on ionization:
 \[A^- (aq) + H_2O (l) \rightleftharpoons \text{HA (aq)} + \text{OH}^- (aq) \]
 \[\text{BH}^+ (aq) \rightleftharpoons \text{B (aq)} + \text{H}^+ (aq) \]
 - at the stoichiometric point in weak + strong titration

Final Thoughts on Acid-Base Titrations

- pH titration curves:
 - know the characteristic profiles for the 3 categories of titrations
 - know the important points on the curve:
 - stoichiometric point
 - half-way point
 - buffer zone
- calculations for titrations:
 - volume of acid or base req'd to reach stoichiometric pt
 - initial pH of solution
 - pH before, at, beyond & half-way to the stoichiometric pt