1) What ionic compound would be formed from Al and O? 1 pt

Al₂O₃

2) Provide the equation for the formation of the compound in 1) that is associated with the lattice energy. 1 pt

2 Al³⁺ (g) + 3 O²⁻ (g) → Al₂O₃ (s)

3) Match the following lattice energies with the appropriate ionic compound. 2 pts

Charge considerations make Ca²⁺ compounds have a more negative value than Na⁺ compounds. Size considerations make Se compounds have a more negative value than Te compounds.

CaSe d a) -2095 kJ/mol
Na₂Se b b) -2130 kJ/mol
CaTe c c) -2721 kJ/mol
Na₂Te a d) -2862 kJ/mol

4) Use the following information to calculate the enthalpy of formation of MgCl₂ (s) from its elements. 2.5 pts

Mg (s) + Cl₂ (g) → MgCl₂ (s)

ΔHreaction = ΔH (Mg sublimation) + ΔH (Mg first ionization) + ΔH (Mg second ionization) + ΔH (Cl₂ bond dissociation) + 2 ΔH (Cl electron affinity) + ΔH (lattice energy for MgCl₂)

ΔHreaction = 1 mol x 148 kJ/mol + 1 mol x 738 kJ/mol + 1 mol x 1588 kJ/mol + 1 mol x 243 kJ/mol + 2 mols x (-349 kJ/mol) + 1 mol x -2975 kJ/mol = -956 kJ/mol

5) The lattice energy for formation of MgCl (Mg⁺ and Cl⁻) is 783 kJ/mol. What is the energy of formation for MgCl? 2.5 pts

ΔHreaction = ΔH (Mg sublimation) + ΔH (Mg first ionization) + ΔH (Mg second ionization) + ΔH (Cl₂ bond dissociation) + ΔH (Cl electron affinity) ΔH (lattice energy for MgCl)

ΔHreaction = 1 mol x 148 kJ/mol + 1 mol x 738 kJ/mol + 0.5 mol x 243 kJ/mol + 1 mol x (-349 kJ/mol) + 1 mol (-783 kJ/mol) = -124.5 kJ/mol

6) Given values calculated for formation of the ionic solids MgCl and MgCl₂, which is more likely to form and why? 1 pt

MgCl₂ – the reaction is more exothermic (gives off more energy) and thus is a more stable compound.

7) For the following elements:

a) circle those that will accept less than an octet (indicated here by *)

b) underline those that will accept more than an octet

O P B* N As Be* Kr F
8) Which of the following bonds would be the most polar? 1 pt
 a) Si-Cl b) Si-Br c) P-Cl d) P-Br

9) What cation has a +3 charge and one 3d electron? _____ Ti ________ 1 pt

10) In each group, circle the largest atom/ion. 2 pts
 a) Sr Mg P b) Ba\(^{2+}\) Xe Te\(^{2-}\)

11) Provide a correct Lewis dot structure for each compound below. 9 pts
 a) BBr\(_3\) 24 valence electrons, B center atom with 3 bonds, each Br complete octet
 b) CBrF\(_3\) 32 valence electrons, C center atom, Br and F with a complete octet
 c) SO\(_2\) 18 valence electrons, S center atom, single bond to one O, double bond to other, one non-bonding electron pair on S, single bonded O has three non-bonding pairs of electrons and double bonded O has two non-bonding pairs of electrons.
 d) H\(_2\)CO 12 valence electrons, C center atom, single bond to H, double bond to O, which has two non-bonding pairs of electrons
 e) PF\(_5\) 40 valence electrons, P center atom with a single bond to each F, each F complete octet
 f) I\(_3^-\) 22 valence electrons, center I has a single bond to other two I, non center I have an octet, center I has three non-bonding pairs of electrons. Do not put double bonds in this structure. Surround structure with box and – sign.
 g) N\(_2\) 10 valence electrons, triple bond between the N, each has a non-bonding pair of electrons
 h) PH\(_4^+\) 8 valence electrons, P central atom with single bond to each H, surround structure with box and +
 i) XeF\(_4\) 36 valence electrons, Xe center atom, single bond to each F which have a complete octet, Xe has two non-bonding pairs of electrons