TERRENCE SHERIDAN
Department of Physics & Astronomy • Ohio Northern University • Ada, OH 45810
t-sheridan@onu.edu • (419) 772-2739 • fax (419) 772-1888

REFEREED PUBLICATIONS
105. T. E. Sheridan and J. C. Gallagher, "Dusty plasma (Yukawa) rings," Physical Review Letters (submitted).
arXiv:1004.1148
104. T. E. Sheridan, "Discontinuous structure transition in a Debye cluster," Physics of Plasmas (in press).
103. D. V.Tkachenko, T. E. Sheridan and V. R. Misko, "Dispersion relations for circular single and double dusty plasma chains," Physics of Plasmas
18, 103709 (2011). arXiv:1107.3980v1
102. T. E. Sheridan and A. Hayes, "Charge fluctuations for particles on a surface exposed to plasma," Applied Physics Letters
98, 091501-1-3 (2011).
101. T. E. Sheridan and A. L. Magyar, "Power law behavior of the zigzag transition in Yukawa clusters," Physics of Plasmas
17, 113703-1-5 (2010). arXiv:1001.0753
100. T. E. Sheridan, "The plasma sheath around large discs and ion collection by planar Langmuir probes," Journal of Physics D: Applied Physics
43, 105204-1-5 (2010).
99. T. E. Sheridan and W. L. Theisen, "Transition to chaos in a driven dusty plasma," Physics of Plasmas
17, 013703-1-6 (2010).
98. T. E. Sheridan and K. D. Wells, "Dimensional phase transition in small Yukawa clusters," Physical Review E
81, 016404-1-8 (2010). arXiv:0912.1650
97. T. E. Sheridan, "Dusty plasma ring model," Physica Scripta
80, 065502-1-6 (2009).
96. T. E. Sheridan, "Monte Carlo study of melting in a finite two-dimensional dusty plasma," Physics of Plasmas
16, 083705-1-6 (2009).
95. T. E. Sheridan, "Effect of radio frequency discharge power on dusty plasma parameters," Journal of Applied Physics
106, 033303-1-6 (2009).
94. T. E. Sheridan, “Analytical expression for sheath edge around corner cathodes,” Journal of Physics D: Applied Physics
42, 015212-1-7 (2009).
93. T. E. Sheridan, “Melting transition in a two-dimensional complex plasma heated by driven acoustic instability,” Physics of Plasmas
15, 103702-1-6 (2008).
92. T. E. Sheridan, V. Nosenko and J. Goree, “Experimental study of nonlinear solitary waves in two-dimensional dusty plasma,” Physics of Plasmas
15, 073703-1-6 (2008).
91. T. E. Sheridan, K. D. Wells, M. J. Garee and A. C. Herrick, “Theoretical and experimental study of elliptical Debye clusters,” Journal of Applied Physics
101, 113309-1-6 (2007).
90. T. E. Sheridan, “Criterion for bulk behavior of a Yukawa disk,” Physics of Plasmas
14, 032108-1-6 (2007).
89. T. E. Sheridan, M. R. Katschke and K. D. Wells, “Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres,” Review of Scientific Instruments
78, 023502-1-5 (2007).
88. T. E. Sheridan and W. L. Theisen, “Study of two-dimensional Debye clusters using Brownian motion,” Physics of Plasmas
13, 062110-1-8 (2006).
87. T. E. Sheridan, “Continuum model for the breathing oscillation of a spherical complex plasma,” Physics of Plasmas
13, 022106-1-7 (2006).
86. T. E. Sheridan, “Accuracy of theory for the breathing oscillation of a complex plasma disc,” Journal of Physics D: Applied Physics
39, 693-699 (2006).
85. T. E. Sheridan, “Center-of-mass and breathing oscillations in small complex plasma disks,” Physical Review E
72, 026405-1-7 (2005).
84. T. E. Sheridan, “Chaos in a complex plasma ,” Physics of Plasmas
12, 080701-1-4 (2005).
83. T. E. Sheridan, “Calculation of two-dimensional plasma sheath with application to radial dust oscillations,” Journal of Applied Physics
98, 023302-1-6 (2005).
82. T. E. Sheridan, “Theory for the breathing mode of a complex plasma disk,” Physics of Plasmas
11, 5520-5524 (2004).
81. T. E. Sheridan, C. R. Buckey, D. J. Cox, R. J. Merrill and W. L. Theisen, “Breathing-mode resonance of a complex plasma disk,” Physics Letters A
329, 88-93 (2004).
80. N. St. J. Braithwaite, T. E. Sheridan and R. W. Boswell, “Transient rf self-bias in electropositive and electronegative plasmas,” Journal of Physics D: Applied Physics
36, 2837-3844 (2003).
79. D. T. K. Kwok, Z. M. Zeng, P. K. Chu and T. E. Sheridan, “Hybrid simulation of sheath and ion dynamics of plasma implantation into ring-shaped targets,” Journal of Physics D: Applied Physics
34, 1091-1099 (2001).
78. T. E. Sheridan, “Solution of the plasma-sheath equation with a cool Maxwellian source,” Physics of Plasmas
8, 4240-4245 (2001).
77. C. Charles, A. W. Degeling, T. E. Sheridan, J. H. Harris, M. A. Lieberman and R. W. Boswell, “Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer,” Physics of Plasmas
7, 5232-5241 (2000).
76. P. Chabert and T. E. Sheridan, “Kinetic model for the low-pressure electronegative discharge,” Journal of Physics D: Applied Physics
33, 1854-1860 (2000).
75. T. E. Sheridan and Kyeong-Koo Chi, “Characterization of m = -1 helicons,” Physics Letters A
271, 391-397 (2000).
74. T. E. Sheridan, “How big is a small Langmuir probe?,” Physics of Plasmas
7, 3084-3088 (2000).
73. T. E. Sheridan, N. St. J. Braithwaite and R. W. Boswell, “Relation between double layers and flux for a collisionless discharge with two negative components,” Physics of Plasmas
6, 4375-4381 (1999).
72. T. E. Sheridan, “Computational scheme for simulating plasma dynamics during plasma immersion ion implantation,” Acta Metallurgica Sinica (English Letters)
13, 611-617 (1999).
71. P. Chabert, T. E. Sheridan, R. W. Boswell, and J. Perrin, “Electrostatic probe measurement of the negative ion fraction in an SF
6 helicon discharge,” Plasma Sources Science and Technology 8, 561-566 (1999).
70. T. E. Sheridan and K. E. Lonngren, “Excitation and propagation of negative-potential solitons in an electronegative plasma,” Journal of Applied Physics
86, 3530-3535 (1999).
69. A. W. Degeling, T. E. Sheridan, and R. W. Boswell, “Intense on-axis plasma production and associated relaxation oscillation in a large-volume helicon source,” Physics of Plasmas
6, 3664-3673 (1999).
68. T. E. Sheridan, “Double layers in a modestly collisional electronegative discharge,” Journal of Physics D: Applied Physics
32, 1761-1767 (1999).
67. T. E. Sheridan, P. Chabert, and R. W. Boswell, “Positive ion flux from a low-pressure electronegative discharge,” Plasma Sources Science and Technology
8, 457-462 (1999).
66. Kyeong-Koo Chi, T. E. Sheridan, and R. W. Boswell, “Resonant cavity modes of a bounded helicon discharge,” Plasma Sources Science and Technology
8, 421-431 (1999).
65. T.-K. Kwok, X. Zeng, Q. Chen, P. K. Chu, and T. E. Sheridan, “Effects of tube length and radius for inner surface plasma immersion ion implantation using an auxiliary electrode,” IEEE Transactions on Plasma Science
27, 225-238 (1999).
64. T. E. Sheridan, “Evolution of unstable ion acoustic solitons,” IEEE Transactions on Plasma Science
27, 140-141 (1999).
63. A. W. Degeling, T. E. Sheridan, and R. W. Boswell, “Model for relaxation oscillations in a helicon discharge,” Physics of Plasmas
6, 1641-1648 (1999).
62. T. E. Sheridan, “A Model of plasma-based ion implantation around a round hole in a flat plate,” Journal of Physics D: Applied Physics
32, 886-890 (1999).
61. Y. El-Zein, T. E. Sheridan, K. E. Lonngren, and W. Horton, “Excitation of ion acoustic solitons from grids,” Journal of Plasma Physics
61, 161-168 (1999).
60. W. Lu, K. G. H. Baldwin, M. D. Hoogerland, S. J. Buckman, T. J. Senden, T. E. Sheridan, and R. W. Boswell, “Sharp edged silicon structures generated using atom lithography with metastable helium atoms,” Journal of Vacuum Science and Technology B
16, 3846-3849 (1998).
59. T. E. Sheridan, S. Yi, and K. E. Lonngren, “On the origin of the ion acoustic soliton,” Physics of Plasmas
5, 3165-3170 (1998).
58. T. E. Sheridan, M. J. Goeckner, and J. Goree, “Electron velocity distribution functions in a sputtering magnetron discharge for the E x B direction,” Journal of Vacuum Science and Technology A
16, 2173-2176 (1998).
57. T. E. Sheridan, “Some properties of large-amplitude, negative-potential solitary waves in a three-component plasma,” Journal of Plasma Physics
60, 17-28 (1998).
56. X. C. Zeng, T. K. Kwok, A. G. Liu, P. K. Chu, B. Y. Tang, and T. E. Sheridan, “Plasma immersion ion implantation of the interior surface of a small cylindrical bore using an auxiliary electrode for finite-rise-time voltage pulses,” IEEE Transactions on Plasma Science
26, 175-180 (1998).
55. T. E. Sheridan, T. K. Kwok, and P. K. Chu, “Kinetic model of plasma-based ion implantation of a short, cylindrical tube with auxiliary electrode,” Applied Physics Letters
72, 1826-1828 (1998).
54. T. E. Sheridan, “Simulation of plasma-based ion implantation of a sawtooth target,” Surface and Coatings Technology
93, 225-228 (1997).
53. S. Yi, Y. El-Zein, K. E. Lonngren, and T. E. Sheridan, “Plasma sheath evolution from perturbed electrodes in a negative ion plasma. Part 2. Experiment and PIC simulation,” Journal of Plasma Physics
58, 455-466 (1997).
52. T. E. Sheridan, “Model for ion oscillations at a negatively-biased grid,” Physics Letters A
235, 253-258 (1997).
51. T. E. Sheridan, “Analytic solution for plasma dynamics in a small pulsed bore,” Physics of Plasmas
4, 3442-3444 (1997).
50. X. C. Zeng, T. K. Kwok, A. G. Liu, P. K. Chu, B. Y. Tang, and T. E. Sheridan, “Effects of the auxiliary electrode radius during plasma immersion ion implantation of a small cylindrical bore,” Applied Physics Letters
71, 1035-1037 (1997).
49. T. E. Sheridan, “Effect of target size on dose uniformity in plasma-based ion implantation,” Journal of Applied Physics
81, 7153-7157 (1997).
48. T. E. Sheridan, “Evolution of the ion distribution function for an expanding sheath with collisions,” Plasma Sources Science and Technology
6, 91-95 (1997).
47. Y. El-Zein, S. Yi, K. E. Lonngren, I. Alexeff, T. E. Sheridan, and H. Hsuan, “Plasma sheath evolution from perturbed electrodes in a negative-ion plasma,” Journal of Plasma Physics
57, 47-57 (1997).
46. T. E. Sheridan, “Transient sheath in a cylindrical bore for finite-rise-time voltage pulses,” Surface and Coatings Technology
85, 204-208 (1996).
45. T. E. Sheridan, “A model of plasma source ion implantation for inner surface modification,” Journal of Physics D: Applied Physics
29, 2733-2734 (1996).
44. T. E. Sheridan, “Sheath expansion at a corner,” Journal of Physics D: Applied Physics
29, 2725-2728 (1996).
43. T. E. Sheridan, “Analytic theory of sheath expansion into a cylindrical bore,” Physics of Plasmas
3, 3507-3512 (1996).
42. T. E. Sheridan, “Sheath expansion into a large bore,” Journal of Applied Physics
80, 66-69 (1996).
41. T. E. Sheridan, “Self-similar sheath expansion from a segmented planar electrode,” Physics of Plasmas
3, 2461-2466 (1996).
40. Y. El-Zein, A. Amin, C. Shen, S. Yi, K. E. Lonngren, and T. E. Sheridan, “Two-dimensional sheath evolution in a negative-ion plasma,” Journal of Applied Physics
79, 3853-3860 (1996).
39. T. E. Sheridan, “Ion focusing by an expanding, two-dimensional plasma sheath,” Applied Physics Letters
68, 1918-1920 (1996).
38. T. E. Sheridan, “Particle-in-cell simulation of the pulsed sheath in a trench,” IEEE Transactions on Plasma Science
24, 57-58 (1996).
37. T. E. Sheridan, “The ion-matrix sheath around a round hole,” Plasma Sources Science and Technology
4, 527-533 (1995).
36. T. E. Sheridan and M.-C. Petcu, “On the collisional transient sheath,” IEEE Transactions on Plasma Science
23, 865-869 (1995).
35. T. E. Sheridan, M. J. Goeckner, and J. Goree, “Electron distribution functions in a sputtering magnetron discharge,” Japanese Journal of Applied Physics
34, 4977-4982 (1995).
34. T. E. Sheridan, “Pulsed sheath ion dynamics in a trench,” Journal of Physics D: Applied Physics
28, 1094-1098 (1995).
33. T. E. Sheridan and M. J. Goeckner, “Collisional sheath dynamics,” Journal of Applied Physics
77, 4967-4972 (1995).
32. M. J. Goeckner, R. P. Fetherston, W. N. G. Hitchon, N. Horswill, E. R. Keiter, M. M. Shamin, R. A. Breun, J. R. Conrad, and T. E. Sheridan, “Dynamics of collisional pulsed planar sheaths,” Physical Review E
51, 3760-3763 (1995).
31. T. E. Sheridan and J. Goree, “Langmuir-probe characteristic in the presence of drifting electrons,” Physical Review E
50, 2991-2996 (1994).
30. T. E. Sheridan, “Pulsed sheath dynamics in a small cylindrical bore,” Physics of Plasmas
1, 3485-3489 (1994).
29. J. J. Carroll III, M. E. Koepke, W. E. Amatucci, T. E. Sheridan, and M. J. Alport, “A segmented disk electrode to produce parallel and transverse particle drifts,” Review of Scientific Instruments
65, 2991-2995 (1994).
28. W. E. Amatucci, M. E. Koepke, J. J. Carroll III, and T. E. Sheridan, “Observation of ion-cyclotron turbulence at small values of magnetic-field-aligned current,” Geophysical Research Letters
21, 1595-1598 (1994).
27. M. E. Koepke, M. J. Alport, T. E. Sheridan, W. E. Amatucci, and J. J. Carroll III, “Asymmetric spectral broadening of modulated electrostatic ion-cyclotron waves,” Geophysical Research Letters
21, 1011-1014 (1994).
26. M. E. Koepke, W. E. Amatucci, J. J. Carroll III, and T. E. Sheridan, “Experimental verification of the inhomogeneous energy-density driven instability,” Physical Review Letters
72, 3355-3358 (1994).
25. T. E. Sheridan and M. J. Alport, “Two-dimensional model of ion dynamics during plasma source ion implantation,” Applied Physics Letters
64, 1783-1785 (1994).
24. K. Thomas, T. E. Sheridan, and M. J. Alport, “Two ion fluid model for plasma source ion implantation,” Journal of Vacuum Science and Technology B
12, 901-904 (1994).
23. T. E. Sheridan and M. J. Alport, “Ion-matrix sheath around a square bar,” Journal of Vacuum Science and Technology B
12, 897-900 (1994).
22. T. E. Sheridan, “Ion-matrix sheath in a cylindrical bore,” Journal of Applied Physics
74, 4903-4906 (1993).
21. W. E. Amatucci, M. E. Koepke, T. E. Sheridan, M. J. Alport, and J. J. Carroll III, “Self-cleaning Langmuir probe,” Review of Scientific Instruments
64, 1253-1256 (1993).
20. M. J. Goeckner, J. Goree, and T. E. Sheridan, “Saturation broadening of laser-induced fluorescence from plasma ions,” Review of Scientific Instruments
64, 996-1000 (1993).
19. J. Goree and T. E. Sheridan, “Particulate release from surfaces exposed to a plasma,” Journal of Vacuum Science and Technology A
10, 3540-3544 (1992).
18. M. J. Goeckner, J. Goree, and T. E. Sheridan, “Measurements of ion velocity and density in the plasma sheath,” Physics of Fluids B: Plasma Physics
4, 1663-1670 (1992).
17. T. E. Sheridan, J. Goree, Y. T. Chiu, R. L. Rairden, and J. A. Kiessling, “Observation of dust shedding from material bodies in a plasma,” Journal of Geophysical Research
97, 2935-2942 (1992).
16. M. R. Brown, T. E. Sheridan, and M. A. Hayes, “Temporal evolution of the electron distribution function in an electron cyclotron resonant discharge,” Journal of Applied Physics
70, 5306-5313 (1991).
15. M. J. Goeckner, J. Goree, and T. E. Sheridan, “Ion impact etch anisotropy downstream from diffusion plasma sources,” Journal of Vacuum Science and Technology A
9, 3178-3180 (1991).
14. M. J. Goeckner, J. Goree, and T. E. Sheridan, “Laser-induced fluorescence characterization of a multidipole filament plasma,” Physics of Fluids B: Plasma Physics
3, 2913-2921 (1991).
13. T. E. Sheridan and J. Goree, “Collisional plasma sheath model,” Physics of Fluids B: Plasma Physics
3, 2796-2804 (1991).
12. J. Goree and T. E. Sheridan, “Magnetic field dependence of sputtering magnetron efficiency,” Applied Physics Letters
59, 1052-1054 (1991).
11. T. E. Sheridan, M. J. Goeckner, and J. Goree, “Observation of two-temperature electrons in a sputtering magnetron plasma,” Journal of Vacuum Science and Technology A
9, 688-690 (1991).
10. M. J. Goeckner, J. Goree, and T. E. Sheridan, “Monte Carlo simulation of ions in a magnetron plasma,” IEEE Transactions on Plasma Science
19, 301-308 (1991).
9. T. E. Sheridan, M. J. Goeckner, and J. Goree, “Pressure dependence of ionization efficiency in sputtering magnetrons,” Applied Physics Letters
57, 2080-2082 (1990).
8. M. J. Goeckner, J. Goree, and T. E. Sheridan, “Laser-induced fluorescence characterization of ions in a magnetron plasma,” Journal of Vacuum Science and Technology A
8, 3920-3924 (1990).
7. J. E. Miranda, M. J. Goeckner, J. Goree, and T. E. Sheridan, “Monte Carlo simulation of ionization in a magnetron plasma,” Journal of Vacuum Science and Technology A
8, 1627-1631 (1990).
6. T. E. Sheridan, M. J. Goeckner, and J. Goree, “Electron and ion transport in magnetron plasmas,” Journal of Vacuum Science and Technology A
8, 1623-1626 (1990).
5. T. E. Sheridan, M. J. Goeckner, and J. Goree, “Model of energetic electron transport in magnetron discharges,” Journal of Vacuum Science and Technology A
8, 30-37 (1990).
4. T. E. Sheridan and J. Goree, “Analytic expression for the electric potential in the plasma sheath,” IEEE Transactions on Plasma Science
17, 884-888 (1989).
3. T. E. Sheridan and J. Goree, “Low-frequency turbulent transport in magnetron plasmas,” Journal of Vacuum Science and Technology A
7, 1014-1018 (1989).
2. T. E. Sheridan and M. A. Hayes, “Multichannel boxcar-averaged measurements of plasma parameters made using a digital storage scope,” Review of Scientific Instruments
59, 1081-1084 (1988).
1. M. R. Brown, T. E. Sheridan, and M. A. Hayes, “Reentrant cavity as a low-power plasma source,” Review of Scientific Instruments
57, 2957-2960 (1986).

CONFERENCE PROCEEDINGS
7. M. E. Koepke, T. E. Sheridan and M. R. Millecchia, “Observation of small-integer dimensionality in a system with complicated spectra,” Physics of Space Plasmas (1993), (MIT Center for Theoretical Geo/Cosmo Plasma Physics, Cambridge, 1995) pp. 313-324.
6. T. E. Sheridan, M. E. Koepke, C. A. Selcher and T. N. Good, “Periodic pulling in a driven relaxation oscillator,” Proceedings of SPIE: Exploiting Chaos and Nonlinearities 2039, 158-167 (1993).
5. M. E. Koepke, T. E. Sheridan and M. J. Alport, “Effects of periodic pulling on spontaneous oscillations,” Physics of Space Plasmas (1992), (Scientific Publishers, Cambridge, 1993) pp. 551-558.
4. M. E. Koepke, W. E. Amatucci, J. J. Carroll III, M. J. Alport and T. E. Sheridan, “Effect of transverse, localized, dc electric fields on current-driven ion-cyclotron waves,” Auroral Plasma Dynamics, AGU Monograph #80, (American Geophysical Union, 1993) pp. 287-291.
3. M. E. Koepke, M. J. Alport, T. E. Sheridan, W. E. Amatucci, and J. J. Carroll III, “Waves driven by strong transverse potential structures,” Proceedings of the International Conference on Plasma Physics, Innsbruck, (University of Innsbruck, 1992), Volume III, p. 1896.
2. M. J. Goeckner, J. Goree, and T. E. Sheridan, “Laser-induced fluorescence measurement of plasma ion distribution functions: Corrections due to spatially inhomogeneous laser intensities,” Advances in Laser Science IV: Proceedings of the Fourth International Laser Conference (American Institute of Physics, 1989), pp. 761-766.
1. M. A. Hayes, M. R. Brown, T. E. Sheridan, R. L. Abraham, and M. A. Kasevich, “Current Drive from RF-Induced Modulation of Plasma Magnetization,” AIP Conference Proceedings, No. 129, Radio Frequency Plasma Heating (American Institute of Physics, 1985), pp. 213-217.