Chapter 6
The Solar System
6.1 An Inventory of the Solar System

6.2 Measuring the Planets

6.3 The Overall Layout of the Solar System

6.4 Terrestrial and Jovian Planets

6.5 Interplanetary Matter
Units of Chapter 6 (cont.)

6.6 Spacecraft Exploration of the Solar System

Gravitational “Slingshots”

6.7 How Did the Solar System Form?

Angular Momentum
Early astronomers knew of the stars, the 7 luminaries, comets, and meteors.

The Copernican Revolution gave us the correct ordering and spacing of the planets (in AU). The telescope led to measuring: the size of AU, stellar parallax, aberration of starlight and lots of new objects ...
6.1 An Inventory of the Solar System

Now known:

• Stars: 1
• Planets: 8 (added Uranus and Neptune)
• Moons: 166 (2011) → 190 (2018, includes dwarf planets)
• Asteroids: 8 bigger than 300 km
• Kuiper Belt Objects: 100 bigger than 300 km
• Many small asteroids, KBOs, comets, and meteoroids (<100m).
• "Dwarf Planets: Ceres + >3 big KBOs, Pluto
• Interplanetary: dust (zodiacal), solar wind
6.2 Measuring the Planets

<table>
<thead>
<tr>
<th>Object</th>
<th>Orbital Semimajor Axis (AU)</th>
<th>Orbital Period (Earth Years)</th>
<th>Mass (Earth Masses)</th>
<th>Radius (Earth Radii)</th>
<th>Number of Known Satellites</th>
<th>Rotation Period * (days)</th>
<th>Average Density (kg/m³)</th>
<th>Average Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.39</td>
<td>0.24</td>
<td>0.055</td>
<td>0.38</td>
<td>0</td>
<td>59</td>
<td>5400</td>
<td>5.4</td>
</tr>
<tr>
<td>Venus</td>
<td>0.72</td>
<td>0.62</td>
<td>0.82</td>
<td>0.95</td>
<td>0</td>
<td>-243</td>
<td>5200</td>
<td>5.2</td>
</tr>
<tr>
<td>Earth</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1</td>
<td>1.0</td>
<td>5500</td>
<td>5.5</td>
</tr>
<tr>
<td>Moon</td>
<td>—</td>
<td>—</td>
<td>0.012</td>
<td>0.27</td>
<td>—</td>
<td>27.3</td>
<td>3300</td>
<td>3.3</td>
</tr>
<tr>
<td>Mars</td>
<td>1.52</td>
<td>1.9</td>
<td>0.11</td>
<td>0.53</td>
<td>2</td>
<td>1.0</td>
<td>3900</td>
<td>3.9</td>
</tr>
<tr>
<td>Ceres (asteroid)</td>
<td>2.8</td>
<td>4.7</td>
<td>0.000015</td>
<td>0.073</td>
<td>0</td>
<td>0.38</td>
<td>2700</td>
<td>2.7</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.2</td>
<td>11.9</td>
<td>318</td>
<td>11.2</td>
<td>63</td>
<td>79 (2019) 0.41</td>
<td>1300</td>
<td>1.3</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.5</td>
<td>29.4</td>
<td>95</td>
<td>9.5</td>
<td>56</td>
<td>82 (2019) 0.44</td>
<td>700</td>
<td>0.7</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.2</td>
<td>84</td>
<td>15</td>
<td>4.0</td>
<td>27</td>
<td>-0.72</td>
<td>1300</td>
<td>1.3</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.1</td>
<td>164</td>
<td>17</td>
<td>3.9</td>
<td>13</td>
<td>14 (2019) 0.67</td>
<td>1600</td>
<td>1.6</td>
</tr>
<tr>
<td>Pluto (Kuiper belt object)</td>
<td>39.5</td>
<td>248</td>
<td>0.002</td>
<td>0.2</td>
<td>3</td>
<td>5 (2019) -6.4</td>
<td>2100</td>
<td>2.1</td>
</tr>
<tr>
<td>Hale-Bopp (comet)</td>
<td>180</td>
<td>2400</td>
<td>1.0 × 10⁻⁹</td>
<td>0.004</td>
<td>—</td>
<td>0.47</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>Sun</td>
<td>—</td>
<td>—</td>
<td>332,000</td>
<td>109</td>
<td>—</td>
<td>25.8</td>
<td>1400</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* A negative rotation period indicates retrograde (backward) rotation relative to the sense in which all planets orbit the Sun.
6.2 Measuring the Planets

• Orbital period found from synodic period

• Distance from Sun from Kepler’s 3rd law

• Radius known from angular size and distance

• Masses from Newton’s laws / Kepler's laws

• Rotation period by watching surface features

• Density can be calculated knowing radius and mass

• Uncompressed density: the density of a planet if gravity were not compressing it
6.3 The Overall Layout of the Solar System

All orbits but Mercury’s are close to the same plane
6.3 The Overall Layout of the Solar System

Because the planet’s orbits are close to being in a plane, it is possible for them to appear in a straight line as viewed from Earth.

(Photograph was taken in April 2002.)

6.4 Terrestrial and Jovian Planets

In this picture of the eight planets and the Sun, some of the differences between the four terrestrial and four Jovian planets are clear.

Terrestrials:
- Are smaller
- Are closer to the Sun
- Possess fewer moons & rings
- Have thinner atmospheres
- Are denser
- Have lower masses
- Have higher surface temperatures
- Are composed more of high T_melt minerals
6.4 Terrestrial and Jovian Planets

Differences *among* the terrestrial planets:

- All have atmospheres, but they are very different; surface conditions vary as well
- Only Earth has oxygen in its atmosphere, liquid water on its surface, and life
- Earth and Mars spin at about the same rate; Mercury and Venus rotate much more slowly, Venus also rotates retrograde
- Only Earth and Mars have moons
- Only Earth and Mercury have magnetic fields
6.4 Terrestrial and Jovian Planets

Pluto was always the oddball.
It was on the edge of the Kuiper Belt.
Trans-neptunian objects found (Quauar, Makemake, Sedna)
Then, Eris was found, even bigger than Pluto and has Moon (Dysnomia).

Back in my day

we had nine planets!
Pluto was visited by New Horizons on July 14, 2015. It is bigger than Eris after all! Has 5 moons!
6.5 Interplanetary Matter

Asteroids and meteoroids have rocky composition. (Meteoroids are smaller than 100 m.)

Ex) Asteroid Eros is 34 km long*

*Visited by NEAR in 2001.
6.5 Interplanetary Matter

Comets are “dirty snowballs”

Comet Hale-Bopp

6.5 Interplanetary Matter

Kuiper Belt Objects are beyond Neptune.

Orbits of some suggests a “Planet X.”

“Arrokoth”
6.6 Spacecraft Exploration of the Solar System

Soviet *Venera* probes landed on Venus from 1970 to 1978
The most recent Venus expedition from the United States was the *Magellan orbiter*, 1990–1994.

See Globe of Venus
6.6 Spacecraft Exploration of the Solar System

Viking landers arrived at Mars in 1976
6.6 Spacecraft Exploration of the Solar System

Sojourner rover was deployed on Mars in 1997
Gravitational “slingshots” can change direction of spacecraft, and also accelerate it.
Pioneer and Voyager flew through through asteroid belt on way to outer solar system. This is Voyager.
6.6 Spacecraft Exploration of the Solar System

Pioneer and *Voyager* launch dates and trajectories. Only 5 craft have reached escape velocity from the solar system!

Outer Solar System Probes
- Pioneer-10: 3 March 1972
- Pioneer 11: 6 April, 1973
- Voyager 2: 20 August 1977
- Voyager 1: 5 September 1977

6.6 Spacecraft Exploration of the Solar System

Cassini-Huygens mission arrived at Saturn in 2004.

It has returned many spectacular images.
6.7 How Did the Solar System Form?

Nebular theory:

Cloud of gas and dust contracts due to gravity. Contracts more easily along spin axis – forms disk. Conservation of angular momentum means it spins faster and faster as it contracts.

Planets form out of disk.
Conservation of angular momentum says that the product of radius and rotation rate must be constant. \(L \sim MR^2 \omega \) (where \(\omega \) = spin rate)
Infrared view of the planetary system around the young star β Pictoris
composed with images taken at the European Southern Observatory telescopes in Chile:
- the 3.6-m telescope + ADONIS instrument in La Silla (Mouillet et al. 1997)
- the Very Large Telescope + NACO instrument in Paranal (Lagrange et al. 2009-2010)
Dust is important ingredient in the solar nebula.

1) It allows nebula to cool and contract.

2) It provides nuclei for condensation and accretion onto small chunks.

Dust can be seen in interstellar clouds as shown here.
The **condensation sequence** is the way the composition of the dust grains in the solar nebula changed with distance from the Sun.

High melting point materials close to Sun, high and low melting point material far from Sun.
Once planets got big enough, they could gravitationally capture H and He gas from solar nebula.
6.7 How Did the Solar System Form?

Hierarchical formation terms

Interstellar grains < 1 micrometer
Protoplanetary disk grains >~ 1 micrometer
Aggregates, fractal aggregates
Pebbles
pebble+gas swarms
Planetesimals
Protoplanets

Processes

Bonds, Molecular forces
“Static cling”, Stickiness
Slow collisions, Fast collisions
Gravity + collisions + accretion of gas
6.7 How did the Solar System Form?

More than 3826 extrasolar planets have been confirmed! (4717 Kepler candidates)*

51 Pegasi, the first exoplanet discovered. Artists conception, from Wikipedia.

The diversity of these new systems has required more sophisticated theories for the formation of planet systems.

Ex) Big planets with eccentric orbits found.

Ex) Unusually low densities

*NASA Exoplanet Archive, 10/18
6.7 How did the Solar System Form?

Mass – Period Distribution

Exoplanet properties

*NASA Exoplanet Archive, 10/18
Summary of Chapter 6

• Solar system consists of Sun and everything orbiting it

• Asteroids are rocky, and most orbit between orbits of Mars and Jupiter

• Comets are icy and are believed to have formed early in the solar system’s life

• Major planets orbit Sun in same sense, and all but Venus rotate in that sense as well

• Planetary orbits lie almost in the same plane
Summary of Chapter 6 (cont.)

• Four inner planets—terrestrial planets—are rocky, small, and dense

• Four outer planets—jovian planets—are gaseous and large

• Nebular theory of solar system formation: cloud of gas and dust gradually collapsed under its own gravity, spinning faster as it shrank

• Condensation theory says dust grains acted as condensation nuclei, beginning formation of larger objects