Chem 1721/1821 Exam 2

March 27, 2014

ID#: 2013172 ____

Dr. Susan E. Bates

Name	Key	

Please do not remove this page. The periodic table, constants, and equations you may need are on the last page of this exam. Feel free to remove it, and use it as scrap paper. All pages must be turned in.

Be sure to fill out *and bubble in* the proper letters and numbers on the ScanTron sheet for the following information:

your name

Test Form A

the 9-digit ID number given above (rightmost digit blank)

You should answer questions for Part II (1 - 15) on the Scantron sheet.

You will not have the Scantron returned to you, so if you would like to know what you answered after the exam is returned, circle your answers on this form as well.

	Ch	hem 1721/1821: Exam 2 Name Key	
	Par	art I (40 points): Short Answer.	
2	1.	Write the balanced chemical equation (including physical states and charges on ions) for the base ionization of pyridine, C_5H_5N . $C_5H_5N(\alpha_8) + H_2O(1) \longrightarrow C_5H_5NH^+(\alpha_8) + OH^-(\alpha_8)$	
2	2.	Consider an aqueous solution at 25°C with pOH = 9.75. a. Determine $[H_3O^+]$ in this solution. $pH = IH - pOH = 4.25$; $[H^+] = IO^{-4.25}$	
3		b. Is this solution acidic, basic, or neutral? PH < 7; [H+] > [OH-] acidic	
	3.	Consider the following equilibrium at 350°C: 2 A (g) + B (g) \rightleftharpoons C (g); $K_c = 5.6 \times 10^{-2}$.	
		a. Determine the value of K_p for this reaction at 350°C.	
		$K_p = (.056)(.08206 \cdot 623)^{-2}$ $K_p = 2.1 \times 10^{-5}$	
4		b. If this reaction is started in a 2.00 L flask with 0.10 mol A, 0.12 mol B, and 0.05 mol C, in which direction will the reaction proceed? Circle the <i>one</i> best answer below. $Q = .025/(.05)^2(.06) = 167$; $Q > K$	
		forward toward products reverse toward reactants there will be no change	
	4.	Consider the following proposed 3-step reaction mechanism:	`
		step 1: $S(g) + O_2(g) \rightarrow SO_2(g)$ step 2: $NO_2(g) + SO_2(g) \rightarrow NO(g) + SO_3(g)$ step 3: $NO_2(g) + 1/2 O_2(g) \rightarrow NO_2(g)$	<u>'</u> J
		a. Which species in this mechanism is/are reaction intermediates? Circle the one best answer below.	
		SO ₂ & NO NO & NO ₂ NO only	
6		b. Which species in this mechanism is/are catalysts? Circle the <i>one</i> best answer below.	
		SO ₂ & NO ₂ NO & NO ₂ NO ₂ only	
		c. If the experimentally determined rate law for reaction S (g) + $3/2$ O ₂ (g) \rightarrow SO ₃ (g) is rate = k [S][O ₂], which step in this mechanism is the rate determining step? Circle the <i>one</i> best answer below.	
		step 2 step 3 not enough information to answer	
	5.	For a reversible exothermic reaction, the activation energy for the forward reaction is the activation energy of the reverse reaction. Which <i>one</i> answer below best fills in this blank to complete the statement?	rev
2		less than greater than equal to	<u>-</u>
	6.	Consider the following equilibrium: $HClO_2$ (aq) + NH_3 (aq) $\Rightarrow NH_4^+$ (aq) + ClO_2^- (aq). For $HClO_2$, $K_a = 1.1 \times 10^{-2}$, and	
2		for NH_4^+ , $K_a = 5.6 \times 10^{-10}$. Are the reactants or products favored in this reaction?	
_		Ka HUO2 7 Ka NHy+ : HC102 stronger acid forward rxn favored	

For the reaction A → products, the concentration of A was monitored with time. From the following graph of data collected in studying this reaction, determine the order of the reaction, and its rate constant.

b.
$$1^{st}$$
; -2.30 s^{-1}

c.
$$2^{nd}$$
; 0.01 s^{-1}

e.
$$2^{nd}$$
; -2.30 s^{-1}

Consider the following data collected to study the reaction H_2O_2 (aq) + 3 I^- (aq) + 2 H^+ (aq) $\rightarrow I_3^-$ (aq) + 2 H_2O (l): 3.

$[H_2O_2]_0, M$	[I ⁻] ₀ , M	$[H^+]_0, M$	initial rate, M/s
0.100	5.00 x 10 ⁻⁴ 72×	0.010	0.137 72 ×
0.100 - 2x	1.00 x 10 ⁻³	0.010	$\frac{0.137}{0.274} \xrightarrow{-1} 2x \longrightarrow S^{+} \text{ order in } H_{2} D_{2}$
0.200 - 2x	1.00 x 10 ⁻³	0.010 7 2 x	0.548 - Morder in H ⁺ i
0.400	1.00 x 10 ⁻³	0.020	1.096 -2x shance here due
Determine the rate law	for this reaction.		0.548 - > Norder in H ⁺ ; 1.096 - 2x rate change here due to H ₂ O ₂ : changing H ⁺ has no affect

a. rate =
$$k[H_2O_2][I^-][H^+]$$

b. rate =
$$k[H_2O_2]^2[I^-]^2[H^+]^2$$

c. rate =
$$k[\Gamma][H^+]$$

d. rate =
$$k[H_2O_2][H^+]$$

$$e. \text{ rate} = k[H_2O_2][I^-]$$

- A particular chemical reaction has a rate constant that is three times greater at 40.0°C than at 20.0°C. Determine the 4. activation energy for this reaction.
 - a. 3.00 kJ/mol

d. 3.20 kJ/mol

b. 366 kJ/mol
e. none of these
$$\ln \left(\frac{3}{1} \right) = \frac{\ln \left(\frac{3}{19} \right)}{10083 + \ln \left(\frac{3}{19} \right)} = \frac{\ln \left(\frac{3}{19} \right)}{10083 + \ln \left(\frac{3}{19} \right)}$$

- Determine the pH at 25°C of a 0.036 M solution of a weak acid with $K_a = 3.9 \times 10^{-6}$. $3.9 \times 10^{-6} = \frac{x^2}{.31}$; $x = \begin{bmatrix} H^+ \end{bmatrix}$. 5.
 - a. 2.55
- 3.43

- c. 5.80
- d. 6.85
- e. 7.15

- Which of the following are stronger acids than HClO₂? 6.
 - i. HCl
- ii. HBr
- iii. HClO
- iv. HBrO
- v. HBrO₂

- ıi & ii
- b. i, ii & iii
- c. i, ii & iv
- d. i, ii, iv & v
- e. all of them

		2	$(g) + B (g) \leftrightarrows 2 C (g)$ $C (g) \leftrightarrows A (g) + B (g)$ $A (g) + 2 B (g) \leftrightarrows 4 C (g)$	$egin{array}{c} \mathbf{K_1} \\ \mathbf{K_2} \\ \mathbf{K_3} \end{array}$	
	Which of the following	statements is not tr	rue?		
	a. $K_1 = (K_3)^{1/2}$	b. $K_1 = K_2 K_3$	c. $K_1 = (K_2)^{-1}$		e. all of these are true
8.	Which one of the follow	ring is not a strong	acid or strong base?		_
	a. CsOH	b. HClO₄	c. Ba(OH) ₂	d. HI	e H ₂ SO ₃
9.	Consider 0.78 M aqueou be true?	us solutions of two	monoprotic acids, HX and I	HZ at 25°C. If [OH⁻] is	less in HZ (aq), what must
	a. K_a of $HX = K_a$ of HZ		$(b.)K_a$ of HZ > K_a of I	HX	c. K_a of $HZ < K_a$ of HX
	d. K_a of HZ is too large	to measure	e. HX is a strong acid	d	
10.	Which of the following	are conjugate acid/	base pairs?		
	i. H ₂ O and OH	ii. HClO and H	Cl iii. HC ₂ H ₃ O ₂ ar	$nd C_2H_3O_2^- iv.$	NH ₄ ⁺ and NH ₂ ⁻
	Which of the following statements is not true? a. $K_1 = (K_3)^{1/2}$ b. $K_1 = K_2K_3$ c. $K_1 = (K_2)^{1/2}$ Which one of the following is not a strong acid or strong base a. CsOH b. $HClO_4$ c. Ba Consider 0.78 M aqueous solutions of two monoprotic acids, be true? a. K_4 of $HZ = K_4$ of HZ d. K_4 of HZ d. K_4 of HZ is too large to measure which of the following are conjugate acid/base pairs? i. H_2O and OH^- ii. $HClO$ and HCl iii. $HClO$ and $HClO$ and $HClO$ and $HClO$ and $HClO$ and $HClO$ and		c. ii, iii & iv	d. only i	e. all of these
11.				ium. It is determined the	
	a. 0.0370 mol	b. 0.0156 mol	c. 0.0107 mol	(d) 0.0213 mc	مسنا [٥٥] = ،٥٤٤٢-2×
12.	Which one of the follow	ing statements is n	ot true?		= ,0524-,0311 = ,0813 M
	a. HF is a stronger acid	than H ₂ O because	F is more electronegative th	an O.	OR , 0231 mol
	b. For 1.0 M solutions of	of any 2 weak base	s, the solution of the base w	ith the larger \mathbf{K}_{b} will have	ve the greater [OH ⁻].
	c. A Lewis acid is an el-	ectron pair accepto	r.		
	_		ater than K _{a2} .	e.d	~1 [11+7= No.12
(ll temperatures.	(= TH+T) resure	PH, [H+]= .0013 7. im = (.0013/072) × 100
13.	A 0.072 M solution of a	weak acid, HA, ha	s pH = 2.90 at 25°C. Deteri	mine the percent ionizat	ion in this solution of HA.
	a. 2.5%	b. 9.1%	C.)1.7%	d. 3.5%	e. 0.91%
14.					
			b. t vs. [IO ₃ -]		c. 1/t vs. [IO ₃ ⁻]
/	d. $\log(1/t)$ vs. $\log [IO_3^-]$		e. log t vs. log [IO ₃ ⁻]		
(u. jiog(1/t) vs. log [10 ₃]		o. 10g t vs. 10g [103]		

Consider the following reactions and their associated equilibrium constants:

15. In your Determination of an Equilibrium Constant lab, you studied the iron thiocyanate equilibrium:

$$Fe^{3+}$$
 (aq) + SCN^- (aq) \leftrightarrows $FeSCN^{2+}$ (aq)

In one trial 10.0 mL of 1.00 x 10⁻³ M Fe³⁺ (aq) is combined with 50.0 mL of 0.0200 M SCN⁻ (aq) and diluted to a total volume of 100.0 mL. The concentration of FeSCN²⁺ (aq) at equilibrium is determined via an absorbance measurement to be $5.75 \times 10^{-5} M$. What is [Fe³⁺] at equilibrium?

a. 5.75 x 10⁻⁵ M

/45

b.
$$1.00 \times 10^{-4} \,\mathrm{M}$$
 $\bigcirc 4.25 \times 10^{-5} \,\mathrm{M}$ d. $9.42 \times 10^{-4} \,\mathrm{M}$ equil [FeSCN²⁺] = $\chi = 5.75 \times 10^{-5} \,\mathrm{M}$ equil [Fe²⁺] = $(1.00 \times 10^{-4} - \chi) \,\mathrm{M} = 4.25 \times 10^{-5} \,\mathrm{M}$

Part III (15 points): Problems. Work all of the following problems. Show all work; work with units in all steps; report all answers with appropriate units and significant figures.

- The reaction of NOBr (g) to form NO (g) and Br₂ (g) is 2^{nd} order: $2 \text{ NOBr } (g) \rightarrow 2 \text{ NO } (g) + \text{Br}_2 (g)$. It takes 88.0 minutes at 95.0°C for [NOBr] to decrease from 0.1000 M to 0.0675 M.
 - Determine the value of k at 95.0°C. Be sure to include units!

$$\frac{1}{1000M}$$
 = $\frac{1}{1000M}$

How much time (in min) is required for [NOBr] to decrease from 0.1000 M to 0.0875 M?

$$\frac{1}{.0875M} = (.0547 M \cdot min^{-1}) + \frac{1}{.1000 M}$$

At 25°C, $K_b = 7.3 \times 10^{-5}$ for trimethylamine, $(CH_3)_3N$. If an aqueous solution of this weak base has pH = 11.05, determine the initial concentration of (CH₃)₃N.

initial
$$C_{33}N + H_{20}$$

initial C_{3} , $A - X$
equil $(C_{3}N + H_{20})$

$$(CH_3)_3 N + H_2 0 \Longrightarrow (CH_3)_3 NH^+ + DH^ CJ_0 \longrightarrow FX$$
 $+X \longrightarrow FX$
 $(CJ_0 - X)M \longrightarrow XM$

$$K_b = 7.3 \times 10^{-5} = \frac{\chi^2}{\text{[]}.-\times}$$

$$7.3 \times 10^{-5} = \frac{(.0011)^2}{[]_1 - .0011}$$

$$[(CH_3)_3N] =$$
______N

- 3. Consider the equilibrium: A (s) + B (g) \rightleftharpoons C (g). In a flask at equilibrium at 250°C, $P_B = 0.240$ atm and $P_C = 0.195$ atm.
 - a. Determine the value of K_P at 250°C.

$$K_p = \frac{.195}{.240} = .813$$

b. If all of the B (g) is removed from the system, and the reaction is allowed to return to equilibrium, what will be the new equilibrium partial pressure of B (in atm)?

$$A(s) + B(g) \longrightarrow C(g)$$
initial g .195 atm
$$A + x = -x$$
equil $x = x$ atm $(.195-x)$ atm

: new P_B = Ø initially

P_c = .195 atm

rxn proceeds
new equilibrium

$$K_p = .813 = \frac{(.195 - x)}{x}$$

$$P_{\rm B} = 108$$
 atm

$$.813 \times = .195 - \times$$

$$1.813 \times = .195$$

Some information that you may find useful:

$$\ln[\mathbf{A}] = -k\mathbf{t} + \ln[\mathbf{A}]_0$$

$$1/[A] = kt + 1/[A]_0$$

$$[\mathbf{A}] = -k\mathbf{t} + [\mathbf{A}]_0$$

$$t_{1/2} = .693/k$$

$$\mathbf{t}_{1/2} = 1/k[\mathbf{A}]_{0}$$

$$\mathbf{t}_{1/2} = [\mathbf{A}]_0/2k$$

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$k = Ae^{-Ea/RT}$$

$$\mathbf{K}_P = \mathbf{K}_{\mathbf{C}}(\mathbf{R}\mathbf{T})^{\Delta \mathbf{n}}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $R = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \text{ OR } 0.08206 \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

$$pX = -\log X$$

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}C$$
 $pK_w = pH + pOH$

$$pK_w = pH + pOH$$

ΙA	II A	III B	IV B	VВ	VI B	VII B		VIII		ΙB	11 B	III A	IV A	VA	VIA	VIIA	mert
																	gases 2
1 1																	He
H																	
1.008		_															4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.17
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.98	24.31											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
		44.96	47.90	5 0.94	52.00	54.94	55.85	58.93	58.71	63.55	65.37	69.72	72.59	74.92	78.96	79.90	83.80
39.10	40.08 38	39	47.90	41	42	43	44	45	46	47	48	49	50	51	52	53	54
37	i i					Tc		Rh	Pd	Ag	Cd	ln	Sn	Sb	Те	1	Xe
Rb	Sr	Υ	Zr	Nb	Mo	1	Ru	102.9	106.4	107.8	112.4	114.8	118.6	121.8	127.6	126.9	131.3
85.46	87.62		91.22	92.91	95.94	98.91	101.0	77	78	79	80	81	82	83	84	85	86
55	56	•-	72	73	74	75	76	'.'		l - '	1	TI	Pb	Bi	Po	At	Rn
Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	l	L			(210)	(222)
132.9	137.3	138.9	178.4	180.9	183.8	186.2	190.2	192.2	195.0	196.9	200.5	204.3	207.2	208.9 115	(210) 116	117	118
87	88	89	104	105	106	107	108	109	110	111	112	113	114		l .		1
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	LV	Uus	Uuo
(223)	226.0	(227)	(267)	(268)	(271)	(272)	(270)	(276)	(269)	(280)	(285)	(286)	(289)	(288)	(293)	(294)	(294)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Dr	Nd	Pm	Sm	Eu	Gd	Tb	Dν	Но	Er	Tm	Yb	Lu
140.1	140.9			150.4	151.9	157.3	158.9	162.5	164.9	167.3	168.9	173.0	174.9
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	(231)	238.0	(237)	(242)	(243)_	(247)_	(247)	(251)	(254)	(253)	(256)	(254)	(262)